• Title/Summary/Keyword: Multiphysics

Search Result 180, Processing Time 0.024 seconds

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

Estimation of a mixed-mode cohesive law for an interface crack between dissimilar materials

  • Song, Sung-Il;Kim, Kwang-Soo;Kim, Hyun-Gyu
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.35-51
    • /
    • 2016
  • In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR (transparent thermoplastic) resin is inversely estimated by the field projection method using numerical solutions and experimentally measured displacements. Displacements in a region far away from the crack tip are measured by digital image correlation technique. An inverse analysis, the field projection method formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the interface crack is also obtained from measured displacements in this study.

Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites

  • Shin, Hyunseong;Han, Jin-Gyu;Chang, Seongmin;Cho, Maenghyo
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L.;Cuervo, D.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2523-2533
    • /
    • 2021
  • In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

Design and fabrication of a new piezoelectric paper feeder actuator without mechanical parts

  • Ghorbanirezaei, Shahryar;Hojjat, Yousef;Ghodsi, Mojtaba
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2019
  • A piezoelectric paper feeder actuator using Micro Virtual Roller (MVR) is proposed, designed, fabricated and tested. This actuator can drive a sheet of paper forward or backward without any mechanical parts, such as the costly and heavy rollers used in traditional paper feeders. In this paper feeder actuator, two vibrating stators which produce traveling waves are used to drive the paper. The vibrations of the stators are similar to those of piezoelectric motors and follow a similar procedure to move the paper. A feasibility study simulated the actuator in COMSOL Multiphysics Software. Traveling wave and elliptical trajectories were obtained and the dimensions of the stator were optimized using FEM so that the paper could move at top speed. Next, the eigenfrequencies of the actuator was determined. Experimental testing was done in order to validate the FEM results that revealed the relationships between speed and parameters such as frequency and voltage. Advantages of this new mechanism are the sharp decrease in power consumption and low maintenance.

Numerical study on the relation between flow parameters and the focal point of fluidic lens (유체 렌즈의 초점과 유동 인자의 상관관계에 대한 수치해석)

  • Lahooti, Mohsen;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • In the present work, the effect of flow parameters such as volume flow rate on focal point of fluidic micro lens is investigated numerically. ANSYS Fluent is used for simulations, and the flow parameters and number of simulations are determined using the space filling method of design of experiment (DOE). Having determined the location of interfaces between fluids inside the micro lens which acts as the lens curvature, a ray tracking simulation on each case is performed using COMSOL Multiphysics to determine the focal point for each lens. These data are then used to provide a relation between flow parameters and the focal point of the lens.

Development of Microchip Removal Equipment Using Neodymium Permanent Magnets (네오디뮴 영구자석을 이용한 미세칩 제거장치의 개발)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2021
  • Machining operations require removal of chips to keep the coolant clean and fresh throughout the operation time. In this study, microchip removal equipment was developed using AutoCAD and CATIA programs for 3D modeling and 2D draft. In addition, the flow analysis and electromagnetic field analysis of the equipment were performed using the COMSOL Multiphysics program. The flow design of the coolant oil tank was realized on the basis of fluid analysis results. Further, on the basis of magnetic density analysis, a conveyer was designed for effectively removing metal microchips in the tank by using arrays of neodymium permanent magnets.

Sensitivity study of parameters important to Molten Salt Reactor Safety

  • Sarah Elizabeth Creasman;Visura Pathirana;Ondrej Chvala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1687-1707
    • /
    • 2023
  • This paper presents a molten salt reactor (MSR) design parameter sensitivity study using a nodal dynamic modelling methodology with explicitly modified point kinetics equation and Mann's model for heat transfer. Six parameters that can impact MSR safety are evaluated. A MATLAB-Simulink model inspired by Thorcon's 550MWth MSR is used for parameter evaluations. A safety envelope was formed to encapsulate power, maximum and minimum temperature, and temperature-induced reactivity feedback. The parameters are perturbed by ±30%. The parameters were then ranked by their subsequent impact on the considered safety envelope, which ranks acceptable parameter uncertainty. The model is openly available on GitHub.

Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process (열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링)

  • Park, Byung Heung;Jeong, Seong-Uk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.768-774
    • /
    • 2014
  • SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of $I_2$ from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an $I_2$ removal process. In this work, $I_2$ particle sinking behavior was modeled to secure basic data for designing an $I_2$ crystallizer applied to $I_2$-saturated $HI_x$ solutions. The composition of $HI_x$ solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to $I_2$ particle radius and temperature. The terminal velocity of an $I_2$ particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to $50^{\circ}C$) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System (금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구)

  • Choi, Je-Se;Choi, Byung-Hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2596-2603
    • /
    • 2013
  • The precision and endurance of tire mold are very important factors to decide the quality of tire. However, the investigation on the thermal deformation of tire mold has a lot of trouble because the tire mold is produced in airtight permanent casting material. In this study, the thermal deformations such as temperature, displacement and stress distributions inside the AC7A tire mold casting material were analyzed by numerical analysis according to the preheating temperature of permanent casting device. In order to verify the results of numerical analysis, the experiments for temperature measurement of the AC7A casting material were carried out under the same condition with numerical analysis. For the numerical analysis, "COMSOL Multiphysics" was used. The preheating temperatures were set up $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. The thermal deformations were calculated in each case. When the preheating temperature is $300^{\circ}C$, displacement and stress are the lowest with 0.25mm and 0.351GPa, but the temperature is the highest with $374.27^{\circ}C$. When the experimental results were compared with the numerical results, there were some temperature differences because of the latent heat by phase change heat transfer. However, the cooling patterns were almost similar except for the latent heat section.