• Title/Summary/Keyword: Multiphase motor

Search Result 14, Processing Time 0.017 seconds

Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive

  • Gregor, Raul;Valenzano, Guido;Rodas, Jorge;Rodriguez-Pineiro, Jose;Gregor, Derlis
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.553-563
    • /
    • 2016
  • This paper presents a digital hardware implementation of a real-time simulator for a multiphase drive using a field-programmable gate array (FPGA) device. The simulator was developed with a modular and hierarchical design using very high-speed integrated circuit hardware description language (VHDL). Hence, this simulator is flexible and portable. A state-space representation model suitable for FPGA implementations was proposed for a dual three-phase induction machine (DTPIM). The simulator also models a two-level 12-pulse insulated-gate bipolar transistor (IGBT)-based voltage-source converter (VSC), a pulse-width modulation scheme, and a measurement system. Real-time simulation outputs (stator currents and rotor speed) were validated under steady-state and transient conditions using as reference an experimental test bench based on a DTPIM with 15 kW-rated power. The accuracy of the proposed digital hardware implementation was evaluated according to the simulation and experimental results. Finally, statistical performance parameters were provided to analyze the efficiency of the proposed DTPIM hardware implementation method.

Design and Drive Performance of Single-phase Hybrid SRM with Commercial Ferrite Permanent Magnets (상용자석을 사용한 단상 하이브리드 SRM의 설계 및 구동 특성)

  • Ahn, Jin-Woo;Heo, Jae-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • Compared to a multiphase SRM, a single-phase SRM has some advantages, such as lower number of switches and power converter size, which leads to gradually increasing in the household appliances and industrial applications. But the torque dead zone is existed in the single-phase SRM which decreases the starting capability of the motor and increases the torque ripple. In order to solve the aforementioned problems, a single-phase hybrid SRM with commercial ferrite permanent magnet is proposed in this paper. Basic design principle for the proposed structure is described. To verify the proposed structure, FEM is employed to get the characteristics of the proposed structure. Based on the analysis, a prototype is designed and manufactured. And, the experimental system is also constructed. The validity of the proposed structure is verified by the experimental results.

The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors

  • Sun, Chi;Ai, Sheng;Hu, Liangdeng;Chen, Yulin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.146-159
    • /
    • 2015
  • Since the power capacity needed for the propulsion of large ships is very large, a multiphase AC induction propulsion mode is generally adopted to meet the higher requirements of reliability, redundancy and maintainability. This paper gives a detailed description of the development of a 20MW fifteen-phase PWM driver for advanced fifteen-phase propulsion induction motors with a special third-harmonic injection in terms of the main circuit hardware, control system design, experiments, etc. The adoption of the modular design method for the main circuit hardware design can make the enclosed mechanical structure simple and maintainable. It can also avoid the larger switch stresses caused by the multiple turn on of the IGBTs in conventional large-capacity converter systems. The use of the distributed controller design method based on a high-speed fiber-optic ring net for the control system can overcome such disadvantages as the poor reliability and long maintenance times arising from the conventional centralized controller which is designed according to point-to-point communication. Finally, the performance of the 20MW PWM driver is verified by experimentation on a new fifteen-phase induction propulsion motor.

Endovascular embolization of persistent liver injuries not responding to conservative management: a narrative review

  • Simon Roh
    • Journal of Trauma and Injury
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • Trauma remains a significant healthcare burden, causing over five million yearly fatalities. Notably, the liver is a frequently injured solid organ in abdominal trauma, especially in patients under 40 years. It becomes even more critical given that uncontrolled hemorrhage linked to liver trauma can have mortality rates ranging from 10% to 50%. Liver injuries, mainly resulting from blunt trauma such as motor vehicle accidents, are traditionally classified using the American Association for the Surgery of Trauma grading scale. However, recent developments have introduced the World Society of Emergency Surgery classification, which considers the patient's physiological status. The diagnostic approach often involves multiphase computed tomography (CT). Still, newer methods like split-bolus single-pass CT and contrast-enhanced ultrasound (CEUS) aim to reduce radiation exposure. Concerning management, nonoperative strategies have emerged as the gold standard, especially for hemodynamically stable patients. Incorporating angiography with embolization has also been beneficial, with success rates reported between 80% and 97%. However, it is essential to identify the specific source of bleeding for effective embolization. Given the severity of liver trauma and its potential complications, innovations in diagnostic and therapeutic approaches have been pivotal. While CT remains a primary diagnostic tool, methods like CEUS offer safer alternatives. Moreover, nonoperative management, especially when combined with angiography and embolization, has demonstrated notable success. Still, the healthcare community must remain vigilant to complications and continuously seek improvements in trauma care.