• Title/Summary/Keyword: Multiphase flows

Search Result 61, Processing Time 0.031 seconds

The impact of ram pressure on the multi-phase ISM probed by the TIGRESS simulation

  • Choi, Woorak;Kim, Chang-Goo;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2018
  • Galaxies in the cluster environment interact with the intracluster medium (ICM), losing the interstellar medium (ISM) and alternating their evolution. Observational evidences of the extraplanar ISM stripped by the ICM's ram pressure are prevalent in HI imaging studies of cluster galaxies. However, current theoretical understanding of the ram pressure stripping (or ICM-ISM interaction in general) is still limited mainly due to the lack of numerical resolution at ISM scales in large-scale simulations. Especially, self-consistent modeling of the turbulent, multiphase ISM is critical to understand star formation in galaxies interacting with the ICM. To achieve this goal, we utilize the TIGRESS simulation suite, simulating a local patch of galactic disks with high resolution to resolve key physical processes in the ISM, including cooling/heating, self-gravity, MHD, star formation, and supernova feedback. We then expose the ISM disk to ICM flows and investigate the evolution of star formation rate and the properties of the ISM. By exploring ICM parameter space, we discuss an implication of the simple ram pressure stripping condition (so called the Gunn-Gott condition) to the realistic ISM.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

A Study on the Encapsulation of Cosmetic Oil Using Computational Fluid Dynamics (전산유체역학을 이용한 화장품 오일 캡슐레이션 현상에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.638-643
    • /
    • 2021
  • Oil is used in various industries, including the agricultural sector, food industry, and functional cosmetics. These oils are chemically unstable and prone to oxidation when exposed to oxygen, light, moisture, or high temperatures. Therefore, various attempts have been made to encapsulate them so that they are not exposed to such environments. When oil is injected into a refrigerant with greater density, the oil can be encapsulated as it rises due to buoyancy caused by the density difference. In this study, oil encapsulation was simulated to find the optimal conditions for operating equipment using computational fluid dynamics (CFD) for multiphase flows. Water or serum can be used as a refrigerant. The viscosity of water is relatively small, and if it is used as a refrigerant, oil droplets can be produced well even if oil and water are continuously injected in the equipment. However, the viscosity of serum is very high, and if it is used, the oil is stretched out and does not leave the nozzle. The results show that when using serum as a cooling medium, oil encapsulation is possible if the injection is stopped for some time after instantaneous injection at high speed.

Numerical Simulation on the Behavior of Air Cloud Discharging into a Water Pool (수조로 방출되는 기포 거동에 대한 수치해석)

  • 김환열;김영인;배윤영;송진호;김희동
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • If the safety depressurization system of APR-1400, the Korean next generation reactor, is in operation, water, air and steam are successively discharging into a in-containment refueling water storage tank through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in the most significant damages to the submerged structures if the oscillation frequency is the same or close to the natural frequency of the structures. The involved phenomena are so complicated that most of the prediction of frequency and pressure loads has been resorted to experimental work and computational approach has been precluded. This study deals with a numerical simulation on the behavior of air bubble clouds discharging into a water pool through a sparger, by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. Among the multiphase flow models, the VOF (Volume Of Fluid) model was selected to simulate the water, air and steam flows. A satisfactory result was obtained comparing the analysis results with the ABB-Atom test results which had been performed for the development of sparser.

Numerical Analysis of Unsteady Cavitating Vortex around Two-dimensional Wedge-shaped Submerged Body (2차원 쐐기형 몰수체의 비정상 공동 와류에 대한 수치해석)

  • Kim, Ji-Hye;Jeong, So-Won;Ahn, Byoung-Kwon;Park, Chul-Soo;Kim, Gun-Do
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • Unlike a slender body, vortices are shed off alternately in the wake of a blunt body. In the case of liquid flows, when the pressure falls below the vapor pressure, cavitation occurs in the vortex core and affects the formation of the vortex street. This phenomenon is of major importance in many practical cases because the alternate shedding of vortices creates imbalanced forces on the body. Hence, it is very important to determine the shedding frequency of cavitating vortices. In this paper, the unsteady cavitating flow around a two-dimensional wedge-shaped submerged body was simulated using the commercial code STAR-CCM+. A numerical investigation of the structure of cavitating vortices was performed for a model with an apex angle of $20^{\circ}C$. The results were validated by comparing them with experimental measurements carried out at a cavitation tunnel of Chungnam National University (CNU-CT). It was found that the shedding frequency of the vortex increased by up to 18%, which was strongly affected by the development of cavitation.

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Study on Surface Vortices in Pump Sump

  • Long, Ngo Ich;Shin, Byeong Rog;Doh, Deog-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.60-66
    • /
    • 2012
  • One of commonly physical phenomena encountered in pump sump systems in which its significant influence to the hydraulic performance of pump system plays an important role in the field of fluid engineering, is the appearance of free surface and submerged vortices. In this paper, a study of the vortices behavior and their formative mechanism of asymmetry is considered in this paper by using numerical approach. The Reynolds-Averaged Navier-Stokes (RANS) equations and k-omega Shear Stress Transport turbulence model used to describe the properties of turbulent flows, in company with VOF multiphase model, are implemented by Fluent code with multi-block structured grid system. In the numerical simulation, the calculated elevation of air-water interface and vortex core contours are used to classify visually surface vortices as well as submerged vortices. It is shown that the free surface vortex is identified by the concavity of liquid region from the free surface and swirling flow at that own plane. To investigate the distinctive behavior of these vortices corresponding to each given flow rate at the same water level, some numerical testing of them are considered here in such a manner that the flow pattern of surface vortex are obtained similarly to the obtained results from experiment. Furthermore, the influence due to the change of grid refinement and the variation of depth of the concavity are also considered in this paper. From that, these influential factors will be implemented to design a good pump sump with higher performance in the future.

Study on the Application of Casting Flow Simulation with Cut Cell Method by the Casting process (Cut Cell 방법을 활용한 공정별 주조유동해석 적용 연구)

  • Young-Sim Choi
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.302-309
    • /
    • 2023
  • In general, castings often have complex shapes and significant variations in thickness within a single product, making grid generation for simulations challenging. Casting flows involve multiphase flows, requiring the tracking of the boundary between air and molten metal. Additionally, considerable time is spent calculating pressure fields due to density differences in a numerical analysis. For these reasons, the Cartesian grid system has traditionally been used in mold filling simulations. However, orthogonal grids fail to represent shapes accurately, leading to a momentum loss caused by the stair-like grid patterns on curved and sloped surfaces. This can alter the flow of molten metals and result in incorrect casting process designs. To address this issue, simulations in the Cartesian grid system involve creating a large number of grids to represent shapes more accurately. Alternatively, the Cut Cell method can be applied to address the problems arising from the Cartesian grid system. In this study, analysis results based on the number of grid in the Cartesian grid system for a casting flow analysis were compared with results obtained using the Cut Cell method. Casting flow simulations of actual products during various casting processes were also conducted, and these results were analyzed with and without applying the Cut Cell method.