• Title/Summary/Keyword: Multiphase Laminar Flow

Search Result 2, Processing Time 0.017 seconds

Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels (다양한 형상의 마이크로 채널 내 밀도 차를 가진 다상 층류 유동의 특성에 대한 매개변수 연구)

  • Paek, Seung-Ho;Kim, Dong-Sung;Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.783-788
    • /
    • 2009
  • In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow.

A Study on the Flow Fields of Bubble Trap of Turbidimeter Using the Multiphase Model (다상모델을 이용한 탁도계 버블트랩 내부 유동장에 관한 고찰)

  • Lee, Kye-Bock;Kim, Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.963-970
    • /
    • 2007
  • The objectives of this study are to examine a bubble trap mechanism of the turbidimeter for low turbidity and to acquire it's technology concerned. Reynolds-Averaged Wavier-Stokes equation and Laglangian discrete phase model were applied to analyze a flow field in the bubble trap. 3D hybrid grid system was used to simulate the flow field of bubble trap and numbers of it's node point are about 110,000. From the comparison between the standard $k-{\varepsilon}$ model and the laminar state, it was found that the former estimated less the velocity in the outlet of bubble trap than the latter did, and that the former estimated more the shear stress at the wall of bubble trap than the latter did. And, it was possible to visualize the path of bubbles in the bubble trap and to copy the removal process of bubbles out bubble trap. Also, it was found that nearly most of bubbles in the bubble trap disappeared.