• Title/Summary/Keyword: Multipath routing protocol

Search Result 68, Processing Time 0.023 seconds

QoS Routing Protocol Based on Virtual Grids and MultiPaths for Mobile Sinks in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 위한 가상 그리드와 다중 경로 기반의 QoS 라우팅 프로토콜)

  • Yim, Jinhyuk;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.385-392
    • /
    • 2016
  • Recently, Expectation Area-based Real-time Routing (EAR2) protocol has been proposed to support real-time routing in wireless sensor networks. EAR2 considers the expectation area of a mobile sink and uses flooding within the expectation area. However, flooding leads to excessive energy consumption and causes long delay against real-time routing. Moreover, since EAR2 uses single path to the expectation area, it is difficult to support reliable routing in sensor networks with high link failures. Thus, to overcome these limitation of EAR2, this paper proposes a reliable and real-time routing protocol based on virtual grids and multipath for mobile sinks. To support real-time routing, the proposed protocol considers expectation grids belonged to the expectation area. Instead of flooding within the expectation area, the proposed protocol uses multicasting to the expectation grids and single hop forwarding in an expectation grid because the multicasting can save much energy and the single hop forwarding can provide short delay. Also, the proposed protocol uses multipath to the expectation grids to deal with link failures for supporting reliable routing. Simulation results show that the proposed protocol is superior to the existing protocols.

Local Grid-based Multipath Routing Protocol for Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 지역적 격자 기반 다중 경로 전송 방안)

  • Yang, Taehun;Kim, Sangdae;Cho, Hyunchong;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1428-1436
    • /
    • 2016
  • A multipath routing in wireless sensor networks (WSNs) provides advantage such as reliability improvement and load balancing by transmitting data through divided paths. For these reasons, existing multipath routing protocols divide path appropriately or create independent paths efficiently. However, when the sink node moves to avoid hotspot problem or satisfy the requirement of the applications, the existing protocols have to reconstruct multipath or exploit foot-print chaining mechanism. As a result, the existing protocols will shorten the lifetime of a network due to excessive energy consumption, and lose the advantage of multipath routing due to the merging of paths. To solve this problem, we propose a multipath creation and maintenance scheme to support the mobile sink node. The proposed protocol can be used to construct local grid structure with restricted area and exploit grid structure for constructing the multipath. The grid structure can also be extended depending on the movement of the sink node. In addition, the multipath can be partially reconstructed to prevent merging paths. Simulation results show that the proposed protocol is superior to the existing protocols in terms of energy efficiency and packet delivery ratio.

Multipath Routing for Load Balancing in Wireless Mesh Network

  • Gao, Hui;Kwag, Young-wan;Lee, Hyung-ok;Nam, Ji-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.548-550
    • /
    • 2013
  • Multipath routing is proposed to perform better load balancing and to provide high fault tolerance. In this paper common factors on multi-path routing for WMNs are discussed and joint multi-channel and multipath routing approaches for load balancing are introduced at the same time. The key issues on how to design an effective multi-path routing protocol with appropriate performance metrics for WMNs are also discussed through the case studies in the paper.

A Study on Ad-Hoc Routing Protocol using Table-Driven DSR (테이블 구동 DSR을 이용한 에드혹 라우팅 프로토콜에 관한 연구)

  • 유기홍;하재승
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1209-1218
    • /
    • 2001
  • In this dissertation, we propose a dynamic source routing protocol supporting asymmetric path for mobile ad hoc networks. At present, the existing dynamic source routing protocol supports only symmetric path for routing. However, in fact, there can exist unidirectional links due to asymmetric property of mobile termenals or current wireless environment. Thus, we implement a mobile ad hoc routing protocol supporting asymmetric routing path, which is fit for more general wireless environment. Especially, the proposed protocol uses an improved multipath maintenance method in order to perform rapid route reconfiguration when route error due to mobility is detected.

  • PDF

GEOP : A Security Aware Multipath Routing Protocol (GEOP : 보안 인식 다중경로 라우팅 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Rapid technological advances in the area of micro electro-mechanical systems (MEMS) have spurred the development of small inexpensive sensors capable of intelligent sensing. A significant amount of research has been done in the area of connecting large numbers of these sensors to create robust and scalable Wireless Sensor Networks (WSNs). The resource scarcity, ad-hoc deployment, and immense scale of WSNs make secure communication a particularly challenging problem. Since the primary consideration for sensor networks is energy efficiency, security schemes must balance their security features against the communication and computational overhead required to implement them. In this paper, we combine location information and probability to create a new security aware multipath geographic routing protocol. The implemented result in network simulator (ns-2) showed that our protocol has a better performance under attacks.

Adaptive Multipath Routing Algorithm for Low-power Lossy Networks (저전력 손실 네트워크에서의 적응형 다중경로 라우팅 알고리즘)

  • Kim, Seunghyun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • For a wireless sensor network in general, efficient routing decision is important because wireless connections are not stable, sensitive to external interference, and topology changes dynamically. RPL standard of IETF is not flexible to various environmental changes and causes packet loss and delay due to topological imbalance. Sending packets through multipath can partially remedy this problem. The multipath routing, however, can introduce significant delay overhead by allocating unnecessary timeslots. This paper proposes an RPL using multipath adaptively according to network conditions. We show by simulations that the proposed algorithm is more efficient than the basic RPL and the multipath RPL.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.

Candidate Path Selection Method for TCP Performance Improvement in Fixed Robust Routing

  • Fukushima, Yukinobu;Matsumura, Takashi;Urushibara, Kazutaka;Yokohira, Tokumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.445-453
    • /
    • 2016
  • Fixed robust routing is attracting attention as routing that achieves high robustness against changes in traffic patterns without conducting traffic measurement and performing dynamic route changes. Fixed robust routing minimizes the worst-case maximum link load by distributing traffic of every source-destination (s-d) router pair onto multiple candidate paths (multipath routing). Multipath routing, however, can result in performance degradation of Transmission Control Protocol (TCP) because of frequent out-of-order packet arrivals. In this paper, we first investigate the influence of multipath routing on TCP performance under fixed robust routing with a simulation using ns-2. The simulation results clarify that TCP throughput greatly degrades with multipath routing. We next propose a candidate path selection method to improve TCP throughput while suppressing the worst-case maximum link load to less than the allowed level under fixed robust routing. The method selects a single candidate path for each of a predetermined ratio of s-d router pairs in order to avoid TCP performance degradation, and it selects multiple candidate paths for each of the other router pairs in order to suppress the worst-case maximum link load. Numerical examples show that, provided the worst-case maximum link load is less than 1.0, our proposed method achieves about six times the TCP throughput as the original fixed robust routing.

A Way to Evaluate Path Stability for Multipath Routing in Wireless Ad Hoc Networks (무선 애드혹 네트워크에서 다중경로 라우팅을 위한 경로 안정성 측정 방법)

  • Zhang, Fu-Quan;Park, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.9-17
    • /
    • 2010
  • The mobility of nodes are different in wireless ad hoc networks. Routes have to be refreshed frequently due to the mobility of the nodes acting as routers. Path consists of a few highly mobile nodes should be avoided to forward packets, because even only one highly mobile node may result in the break of path. We develop a mobility aware method to evaluate path stability for multipath routing in wireless Ad Hoc networks. Specifically, we extend it to a well-studied multipath routing protocol known as ad hoc on-demand multipath distance vector (AOMDV). The resulting protocol is referred to as path stability evaluation (PSE). Performance comparison of AOMDV with PSE are studied through ns-2. Simulation shows that PSE has optimistic results in performance metrics such as packet delivery, end-to-end delay, routing overhead and throughput.

Flexible Disjoint Multipath Routing Protocol Using Local Decision in Wireless Sensor Networks (무선 센서 네트워크에서 지역 결정을 통한 유연한 분리형 다중경로 라우팅 프로토콜)

  • Jung, Kwansoo;Yeom, Heegyun;Park, Hosung;Lee, Jeongcheol;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.911-923
    • /
    • 2013
  • Multipath routing is one of challenging issues for improving the reliability of end-to-end data delivery in wireless sensor networks. Recently, a disjointedness and management of path have been studying to enhance the robustness and efficiency of the multipath routing. However, previous multipath routing protocols exploit the disjointed multipath construction method that is not to consider the wireless communication environment. In addition, if a path failures is occurred due to the node or link failures in the irregular network environment, they maintain the multipath through the simple method that to construct a new extra path. Even some of them have no a method. In order to cope with the insufficiency of path management, a hole detouring scheme, to bypass the failures area and construct the new paths, was proposed. However, it also has the problem that requires a heavy cost and a delivery suspension to the some or all paths in the hole detouring process due to the centralized and inflexible path management. Due to these limitations and problems, the previous protocols may lead to the degradation of data delivery reliability and the long delay of emergency data delivery. Thus, we propose a flexible disjoint multipath routing protocol which constructs the radio disjoint multipath by considering irregular and constrained wireless sensor networks. It also exploits a localized management based on the path priority in order to efficiently maintain the flexible disjoint multipath. We perform the simulation to evaluate the performance of the proposed method.