• Title/Summary/Keyword: Multimodal representation learning

Search Result 5, Processing Time 0.02 seconds

Multi-modal Representation Learning for Classification of Imported Goods (수입물품의 품목 분류를 위한 멀티모달 표현 학습)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.203-214
    • /
    • 2023
  • The Korea Customs Service is efficiently handling business with an electronic customs system that can effectively handle one-stop business. This is the case and a more effective method is needed. Import and export require HS Code (Harmonized System Code) for classification and tax rate application for all goods, and item classification that classifies the HS Code is a highly difficult task that requires specialized knowledge and experience and is an important part of customs clearance procedures. Therefore, this study uses various types of data information such as product name, product description, and product image in the item classification request form to learn and develop a deep learning model to reflect information well based on Multimodal representation learning. It is expected to reduce the burden of customs duties by classifying and recommending HS Codes and help with customs procedures by promptly classifying items.

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

Improving Transformer with Dynamic Convolution and Shortcut for Video-Text Retrieval

  • Liu, Zhi;Cai, Jincen;Zhang, Mengmeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2407-2424
    • /
    • 2022
  • Recently, Transformer has made great progress in video retrieval tasks due to its high representation capability. For the structure of a Transformer, the cascaded self-attention modules are capable of capturing long-distance feature dependencies. However, the local feature details are likely to have deteriorated. In addition, increasing the depth of the structure is likely to produce learning bias in the learned features. In this paper, an improved Transformer structure named TransDCS (Transformer with Dynamic Convolution and Shortcut) is proposed. A Multi-head Conv-Self-Attention module is introduced to model the local dependencies and improve the efficiency of local features extraction. Meanwhile, the augmented shortcuts module based on a dual identity matrix is applied to enhance the conduction of input features, and mitigate the learning bias. The proposed model is tested on MSRVTT, LSMDC and Activity-Net benchmarks, and it surpasses all previous solutions for the video-text retrieval task. For example, on the LSMDC benchmark, a gain of about 2.3% MdR and 6.1% MnR is obtained over recently proposed multimodal-based methods.

Multimodal Sentiment Analysis Using Review Data and Product Information (리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석)

  • Hwang, Hohyun;Lee, Kyeongchan;Yu, Jinyi;Lee, Younghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Due to recent expansion of online market such as clothing, utilizing customer review has become a major marketing measure. User review has been used as a tool of analyzing sentiment of customers. Sentiment analysis can be largely classified with machine learning-based and lexicon-based method. Machine learning-based method is a learning classification model referring review and labels. As research of sentiment analysis has been developed, multi-modal models learned by images and video data in reviews has been studied. Characteristics of words in reviews are differentiated depending on products' and customers' categories. In this paper, sentiment is analyzed via considering review data and metadata of products and users. Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Self Attention-based Multi-head Attention models and Bidirectional Encoder Representation from Transformer (BERT) are used in this study. Same Multi-Layer Perceptron (MLP) model is used upon every products information. This paper suggests a multi-modal sentiment analysis model that simultaneously considers user reviews and product meta-information.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.