• 제목/요약/키워드: Multimodal Biometric Fusion

검색결과 13건 처리시간 0.019초

얼굴과 발걸음을 결합한 인식 (Fusion algorithm for Integrated Face and Gait Identification)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

얼굴과 발걸음을 결합한 인식 (Fusion algorithm for Integrated Face and Gait Identification)

  • ;안성제;홍성준;이희성;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.72-77
    • /
    • 2008
  • 개인 식별 연구는 보안, 감시 시스템에서 중요한 부분이다. 최선의 성능을 가진 시스템을 설계하기 위하여 감지기들로부터 최대 정보를 이용할 수 있도록 설계한다. 다양한 생체 인식 시스템은 등록, 확인, 또는 개인 식별을 위하여 생리 특성이나 행동 특성을 하나이상 활용한다. 발걸음 인식만을 가지고는 아직 개인별 변별적 특징을 안정적으로 나타내지 못하므로, 본 논문에서는 얼굴과 발걸음을 결합한 개인 식별 시스템을 제안한다. 본 논문에서 우리는 한 개의 카메라를 이용한다. 즉, 얼굴과 발걸음 인식 모두 하나의 카메라를 이용하여 획득된 같은 이미지 셋을 사용한다. 본 논문의 중점은 이미지들에서 이용할 수 있는 최대 정보량을 활용하는 것으로 시스템의 성능을 향상시키는 것이다. 결합은 결정 단계에서 고려된다. 제안된 알고리듬은 NLPR 데이터베이스를 사용한다.