• 제목/요약/키워드: Multimachine power system control

검색결과 15건 처리시간 0.02초

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

다기 전력 시스템의 안정화를 위한 탐색화된 정책 반복법 기반 적응형 강인 제어기 설계 (Design of an Adaptive Robust Controller Based on Explorized Policy Iteration for the Stabilization of Multimachine Power Systems)

  • 전태윤;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1118-1124
    • /
    • 2014
  • This paper proposes a novel controller design scheme for multimachine power systems based on the explorized policy iteration. Power systems have several uncertainties on system dynamics due to the various effects of interconnections between generators. To solve this problem, the proposed method solves the LQR (Linear Quadratic Regulation) problem of isolated subsystems without the knowledge of a system matrix and the interconnection parameters of multimachine power systems. By selecting the proper performance indices, it guarantees the stability and convergence of the LQ optimal control. To implement the proposed scheme, the least squares based online method is also investigated in terms of PE (Persistency of Excitation), interconnection parameters and exploration signals. Finally, the performance and effectiveness of the proposed algorithm are demonstrated by numerical simulations of three-machine power systems with governor controllers.

개선된 극점이동 적응제어 알고리즘을 이용한 전력계통 안정화장치의 다기계통 적용 (Application to a Multimachine Power System of Power System Stabilizer using Revised Pole Shift Adaptive Control Algorithm)

  • 이상근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권10호
    • /
    • pp.486-493
    • /
    • 2000
  • This paper presents an application to a multimachine power system of power system stabilizer using revised pole shift adaptive algorithm. Controller parameters are determined by using adaptive control theory in order to maintain optimal operation of generator under the various operating conditions. To determine the optimal parameters of controller and overcome the problem of pole placement algorithm, this paper presents pole shift algorithm revised pole shift factor. Also, the difference between the speed deviation with weighted factor and voltage deviation is used as the input signal of adaptive controller, which provides good damping characteristics. The results tested on a multimachine power system verify that the proposed controller has better dynamic and transient performance than conventional controller.

  • PDF

A New Excitation Control for Multimachine Power Systems II: Robustness and Disturbance Attenuation Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.288-295
    • /
    • 2005
  • In this paper a new adaptive, decentralized excitation control scheme proposed to enhance the transient stability of multimachine power systems is extensively analyzed with respect to its robustness and disturbance attenuation. As shown in the paper, both robustness and disturbance attenuation can be effectively improved by suitably selecting the design parameters of the proposed controller. Particularly, some simple rules for the selection of the control gains and the adaptation parameters are extracted which, as it is proven, may be essential for the system performance. Simulation tests on a two generator infinite bus power system absolutely confirm the theoretical results.

다기계통 안정화를 위한 강인한 적응 퍼지 제어기 설계 (Design of Robust Adaptive Fuzzy Controller for Multimachine Power System)

  • 박장현;박영환;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.407-414
    • /
    • 2001
  • In this paper, we present a decentralized robust adaptive fuzzy controller for the transient stability and voltage regulation of a multimachine power system under a sudden fault. Power systems have uncertain dynamics due to various effects such a lightning, severe storms and equipment failure in addition to interconnections between generators. Hence a robust controller to deal with these uncertainties in needed. The fuzzy systems are adapted using a Lyapunov-based design and the stability of each closed-loop system is guaranteed. Simulation results show that satisfactory performance is achieved by proposed controller.

  • PDF

A New Excitation Control for Multimachine Power Systems I: Decentralized Nonlinear Adaptive Control Design and Stability Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.278-287
    • /
    • 2005
  • In this paper a new excitation control scheme that improves the transient stability of multi machine power systems is proposed. To this end the backstepping technique is used to transform the system to a suitable partially linear form. On this system, a combination of both feedback linearization and adaptive control techniques are used to confront the nonlinearities. As shown in the paper, the resulting nonlinear control law ensures the uniform boundedness of all the state and estimated variables. Furthermore, it is proven that all the error variables are uniformly ultimately bounded (DUB) i.e. they converge to arbitrarily selected small regions around zero in finite-time. Simulation tests on a two generator infinite bus power system demonstrate the effectiveness of the proposed control.

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

Decentralized Control for Multimachine Power Systems, with Nonlinear Interconnections and Disturbances

  • Jung Kyu-Il;Kim Kwang-Youn;Yoon Tae-Woong;Jang Gilsoo
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.270-277
    • /
    • 2005
  • In this paper, a decentralized control problem is considered for multimachine power systems with nonlinear interconnections and disturbances. A direct feedback linearization compensator is employed to cancel most of the nonlinearities, and then a backstepping procedure is applied to deal with the interconnections and to reduce the effects of a disturbance that does not satisfy the matching condition. In this procedure, the disturbance is handled by using a smooth approximation of the signum function. Practical stability is achieved under the assumption that the infinite norm of the disturbance is known. However, even in the case where the infinite norm of the disturbance is not known precisely, the proposed control system still guarantees $L_2$ stability. Furthermore, the origin is globally uniformly asymptotically stable in the absence of the disturbance. A three-machine power system is considered as an application example.

비선형 상호작용을 갖는 전력계통의 비선형 분산 전압제어 (Decentralized Nonlinear Voltage Control of Multimachine Power Systems with Non linear Interconnections)

  • 이재원;윤태웅;김광연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.47-50
    • /
    • 2003
  • For large-scale systems which are composed of interconnections of many lower-dimensional subsystems, decentralized control is preferable since it can alleviate the computational burden, avoid communication between different subsystems, and make the control more feasible and simpler. A power system is such a large-scale system where generators are interconnected through transmission lines. Decentralized control is therefore considered for power systems. In this paper, a robust decentralized excitation control scheme for interactions is proposed to enhance the transient stability of multimachine power systems. First we employ a DFL(Direct Feedback Linearization) compensator to rancel most of the nonlinearities; however, the resulting model still contains nonlinear interconnections. Therefore, we design a robust controller in order to deal with Interconnection terms. In this procedure, an upper bound of interconnection terms is estimated by an estimator. The resulting adaptive scheme guarantees the uniform ultimate boundedness of the closed-loop dynamic systems in the presence of the uncertainties.

  • PDF

Decentralized Control for Multimachine Power Systems with Nonlinear Interconnections and Disturbances

  • Jung, Kyu-Il;Kim, Kwang-Youn;Yoon, Tae-Woong;Gilsoo Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.83.3-83
    • /
    • 2002
  • $\textbullet$ In this paper, a robust decentralized excitation control scheme is proposed $\textbullet$ We prove that the proposed control system is practically stable $\textbullet$ The origin is globally uniformly asymptotically stable in the absence of the disturbance $\textbullet$ If assumption is not satisfied, the proposed control system is still guarantees L2 stability $\textbullet$ Simulations for a three-machine power system demonstrates the effectiveness of the proposed scheme

  • PDF