• Title/Summary/Keyword: Multilayer thin films

Search Result 222, Processing Time 0.022 seconds

Effect of HA Crystals Precipitated by Hydrothermal-Treatment on the Bioactivity of Ti-6Al-7Nb Alloy (열수처리에 의해 석출된 HA 결정이 Ti-6Al-7Nb 합금의 생체활성에 미치는 영향)

  • Kwon O. S.;Choi S. K.;Moon J. W.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.607-613
    • /
    • 2004
  • This study was to investigate the surface properties of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}$-glycerophosphate disodium salt hydrate($DL-{\alpha}$-GP) and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 2 hrs to produce a thin outermost layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. The size of micropores and the thickness of oxide film increased and complicated multilayer by increasing the spark forming voltage. Needle-like HA crystals were observed on anodic oxide film after the hydrothermal treatment at $300^{\circ}C$ for 2 hrs. When increasing $DL-{\alpha}$-GP in electrolyte composition, the precipitated HA crystals showed the shape of thick and shorter rod. However, when increasing CA, the more fine needle shape HA crystals were appeared. The bioactivity in Hanks' solution was accelerated when the oxide films composed with strong anatase peak with presence of rutile peak. The increase of amount of Ca and P was observed in groups having bioactivity in Hanks' solution. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal and it was closer to 1.67 as increasing the immersion time in Hanks' solution.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.