• Title/Summary/Keyword: Multihop wireless networks

Search Result 50, Processing Time 0.029 seconds

Graph theoretical considerations of a channel assignment problem on multihop wireless networks

  • Tamura, Hiroshi;Watanabe, Kaoru;Sengoku, Masakazu;Shinoda, Shoji
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.967-970
    • /
    • 2002
  • Multihop wireless networks consist of mobile terminals with personal communication devices. Each terminal can receive a message from a terminal and send it to the other terminal. In this paper, we discuss edge coloring problems related to multihop wireless networks. We show some relations about the problems.

  • PDF

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

  • Kim, Kyung-Tae;Niculescu, Dragos;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.24-51
    • /
    • 2011
  • When supporting both voice and TCP in a wireless multihop network, there are two conflicting goals: to protect the VoIP traffic, and to completely utilize the remaining capacity for TCP. We investigate the interaction between these two popular categories of traffic and find that conventional solution approaches, such as enhanced TCP variants, priority queues, bandwidth limitation, and traffic shaping do not always achieve the goals. TCP and VoIP traffic do not easily coexist because of TCP aggressiveness and data burstiness, and the (self-) interference nature of multihop traffic. We found that enhanced TCP variants fail to coexist with VoIP in the wireless multihop scenarios. Surprisingly, even priority schemes, including those built into the MAC such as RTS/CTS or 802.11e generally cannot protect voice, as they do not account for the interference outside communication range. We present VAGP (Voice Adaptive Gateway Pacer) - an adaptive bandwidth control algorithm at the access gateway that dynamically paces wired-to-wireless TCP data flows based on VoIP traffic status. VAGP continuously monitors the quality of VoIP flows at the gateway and controls the bandwidth used by TCP flows before entering the wireless multihop. To also maintain utilization and TCP performance, VAGP employs TCP specific mechanisms that suppress certain retransmissions across the wireless multihop. Compared to previous proposals for improving TCP over wireless multihop, we show that VAGP retains the end-to-end semantics of TCP, does not require modifications of endpoints, and works in a variety of conditions: different TCP variants, multiple flows, and internet delays, different patterns of interference, different multihop topologies, and different traffic patterns.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

A Multichannel TDMA MAC Protocol to Reduce End-to-End Delay in Wireless Mesh Networks

  • Trung, Tran Minh;Mo, Jeong-Hoon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.819-822
    • /
    • 2010
  • Supporting QoS over multihop wireless mesh networks is difficult because end-to-end delay increases quickly with the increasing number of hops. This paper introduces a novel multichannel time-division multiple-access media access control (McTMAC) protocol that can help to efficiently reduce delay over multihop networks. Performance evaluation results demonstrate that McTMAC outperforms existing alternative protocols. The max-delay can be reduced by as much as 60% by using McTMAC.

Novel Section-Based Joint Network Coding and Scheduling Scheme in WMNs: JNCS

  • Cha, Jae Ryong;Baek, Gwang Hun
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.380-386
    • /
    • 2015
  • Guaranteeing quality of service over a multihop wireless network is difficult because end-to-end (ETE) delay is accumulated at each hop in a multihop flow. Recently, research has been conducted on network coding (NC) schemes as an alternative mechanism to significantly increase the utilization of valuable resources in multihop wireless networks. This paper proposes a new section-based joint NC and scheduling scheme that can reduce ETE delay and enhance resource efficiency in a multihop wireless network. Next, this paper derives the average ETE delay of the proposed scheme and simulates a TDMA network where the proposed scheme is deployed. Finally, this paper compares the performance of the proposed scheme with that of the conventional sequential scheduling scheme. From the performance analysis and simulation results, the proposed scheme gives more delay-and energy-efficient slot assignments even if the NC operation is applied, resulting in a use of fewer network resources and a reduction in ETE delay.

A GTS Scheduling Algorithm for Voice Communication over IEEE 802.15.4 Multihop Sensor Networks

  • Kovi, Aduayom-Ahego;Bleza, Takouda;Joe, Inwhee
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • The recent increase in use of the IEEE 802.15.4 standard for wireless connectivity in personal area networks makes of it an important technology for low-cost low-power wireless personal area networks. Studies showed that voice communications over IEEE 802.15.4 networks is feasible by Guaranteed Time Slot (GTS) allocation; but there are some constraints to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks with the goal of achieving fairness and optimization of resource allocation. The proposed scheme uses a greedy algorithm to allocate GTSs to devices for successful completion of voice transmission with efficient use of bandwidth while considering closest devices with another factor for starvation avoidance. We analyze and validate the proposed scheme in terms of fairness and resource optimization through numeral analysis.

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.

An Exposed-Terminal-Eliminated Dual-Channel MAC Protocol for Exploiting Concurrent Transmissions in Multihop Wireless Networks

  • Liu, Kai;Zhang, Yupeng;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.778-798
    • /
    • 2014
  • This paper proposes a novel exposed-terminal-eliminated medium access control (ETE-MAC) protocol by combining channel reservation, collision avoidance and concurrent transmissions to improve multi-access performance of the multihop wireless networks. Based on the proposed slot scheduling scheme, each node senses the control channel (CCH) or the data channel (DCH) to accurately determine whether it can send or receive the corresponding packets without collisions. Slot reservation on the CCH can be simultaneously executed with data packet transmissions on the DCH. Therefore, it resolves the hidden-terminal type and the exposed-terminal type problems efficiently, and obtains more spatial reuse of channel resources. Concurrent packet transmissions without extra network overheads are maximized. An analytical model combining Markov model and M/G/1 queuing theory is proposed to analyze its performance. The performance comparison between analysis and simulation shows that the analytical model is highly accurate. Finally, simulation results show that, the proposed protocol obviously outperforms the link-directionality-based dual-channel MAC protocol (DCP) and WiFlex in terms of the network throughput and the average packet delay.

Opportunistic Routing for Bandwidth-Sensitive Traffic in Wireless Networks with Lossy Links

  • Zhao, Peng;Yang, Xinyu
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.806-817
    • /
    • 2016
  • Opportunistic routing (OR) has been proposed as a viable approach to improve the performance of wireless multihop networks with lossy links. However, the exponential growth of the bandwidth-sensitive mobile traffic (e.g., mobile video streaming and online gaming) poses a great challenge to the performance of OR in term of bandwidth guarantee. To solve this problem, a novel mechanism is proposed to opportunistically forwarding data packets and provide bandwidth guarantee for the bandwidth-sensitive traffic. The proposal exploits the broadcast characteristic of wireless transmission and reduces the negative effect of wireless lossy links. First, the expected available bandwidth (EAB) and the expected transmission cost (ETC) under OR are estimated based on the local available bandwidth, link delivery probability, forwarding candidates, and prioritization policy. Then, the policies for determining and prioritizing the forwarding candidates is devised by considering the bandwidth and transmission cost. Finally, bandwidth-aware routing algorithm is proposed to opportunistically delivery data packets; meanwhile, admission control is applied to admit or reject traffic flows for bandwidth guarantee. Extensive simulation results show that our proposal consistently outperforms other existing opportunistic routing schemes in providing performance guarantee.

Investigation of Secure Wireless Multihop Ad hoc Network (안전한 무선 Multihop Ad hoc 네트워크를 위한 연구)

  • Lee, Sang-Duck;Park, Jong-An;Han, Seung-Jo;Pyun, Jae-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.118-126
    • /
    • 2007
  • An ad hoc network is a system of wireless mobile nodes that dynamically self-organize in arbitrary and temporary network topologies allowing people and devices to internetwork without any preexisting communication infrastructure. Although ad hoc network is attractive solution, there are still some major flaws that prevent commercial growth. Security is one of these main barriers; ad hoc networks are known to be particularly vulnerable to security attack. It is difficult to establish a centralized key distribution center and a trusted certification authority to provide cryptographic keys and digital certificates to nodes. To prevent attacks in ad hoc routing protocols, many algorithms have been used. In this paper, we have depicted a secure framework for multipath routing in wireless multihop network, which is comprehensive solution for secure data forwarding in wireless multihop networks. With the simulation results, the proposed scheme is compared with existing source routing scheme.

  • PDF