• Title/Summary/Keyword: Multifunctional biosensor

Search Result 5, Processing Time 0.022 seconds

Development of New Biochip Using Magnetic Force (자기력에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Development of New Biochip using Magnetic Interaction and Random Fluidic Self-assembly (자기력과 Random Fluidic Self-assembly에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

Protein Chip Using Magnetic Force (자기력에 의한 단백질칩)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.386-387
    • /
    • 2006
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Protein Chip by Magnetic Array (자성체 어레이를 이용한 단백질칩)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.426-427
    • /
    • 2005
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Development of 3-Dimensional Biochip Using Magnetic Interaction and Self-Assembly (자기력과 self-assembly에 의한 3차원 바이오칩의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tamiya, E.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1909-1911
    • /
    • 2003
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF