• Title/Summary/Keyword: Multiferroic

Search Result 76, Processing Time 0.026 seconds

Preparation and Characterization of Multiferroic $0.7BiFeO_3-0.3BaTiO_3$ Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 다강체 $0.7BiFeO_3-0.3BaTiO_3$ 박막의 특성 연구)

  • Kim, Kyung-Man;Yang, Pan;Zhu, Jinsong;Joh, Young-Gull;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.88-88
    • /
    • 2009
  • $BiFeO_3$(BFO), when forming a solid solution with $BaTiO_3$(BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.7BFO-0.3BTO thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $600^{\circ}C$ and an oxygen partial pressure of 10mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with. the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron. microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

PREPARATION AND CHARACTERIZATION OF MULTIFERROIC 0.8 $BiFeO_3$-0.2 $BaTiO_3$ THIN FIMLS BY PULSED LASER DEPOSITION

  • Kim, K.M.;Yang, P.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.313-313
    • /
    • 2010
  • $BiFeO_3$ (BFO), when forming a solid solution with $BaTiO_3$ (BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.8 BFO-0.2 BTO thin films on Pt(111)/$TiO_2/SiO_2$/Si substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $700^{\circ}C$ and an oxygen partial pressure of 10mTorr and 330mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower and higher oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films

  • Kim, Kyung-Man;Byun, Seung-Hyun;Yang, Pan;Lee, Yoon-Ho;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.331-332
    • /
    • 2008
  • Couplings between electric, magnetic, and structural order parameters result in the so-called multiferroic phenomena with two or more ferroic phenomena such as ferroelectricity, ferromagnetism, or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) permits potential applications in information storage, spintronics, and magnetic or electric field sensors. The perovskite BiFeO3(BFO) is known to be antiferromagnetic below the Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors responsible for leakage current in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is to make donor-doped BFO compounds and thin films. In this study, (Bi1-x,Ndx)(Fe1-y,Tiy)O3 thin films have been deposited on Pt(111)/TiO2/SiO2/Si substrates by pulsed laser deposition. The effect of dopants on the phase evolution and surface morphology are analyzed. Furthermore, electrical and magnetic properties are measured and their coupling characteristics are discussed.

  • PDF

Microstructure of the Oriented Hexagonal HoMnO3 Thin Films by PLD

  • Choi, Dong-Hyeok;Shim, In-Bo;Kouh, Tae-Joon;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.141-143
    • /
    • 2007
  • We have fabricated (0001) oriented hexagonal $HoMnO_3$ thin films with thickness of 300 nm using Pulsed Laser Deposition (PLD) technique on $Pt(111)/Ti/SiO_2/Si$ substrates. The XRD $\theta-2\theta$ pattern shows only (0002), (0004), and (0008) reflection of a hexagonal phase, and the full width at half maximum (FWHM) of (0004) peak is under $1.6^{\circ}$. The chemical state of Mn from XPS spectra of the films reveals the presence of $Mn^{3+}$ only. The temperature dependence of dielectric constant shows a weak anomaly at magnetic $N\acute{e}el$ temperature $(T_N)$, which is about 70 K.

Magnetoelectric Polymer Composites (자기전기 고분자 복합체)

  • Ko, Kyujin;Noh, Byung-Il;Yang, Su-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.229-241
    • /
    • 2021
  • Since 2010, polymer-based magnetoelectric (ME) composites have been developed with detailed investigations of multiferroic properties such as piezoelectric, magnetostrictive, and magnetoelectric, etc. In particular, as a piezoelectric polymer, poly(vinylidene fluoride) and its co-polymers have been widely used in ME composites for energy harvesting, health monitoring, environment treatment, and bio-medical applications. In this study, main research trend and selected experimental results of polymer-based ME composites are briefly reviewed with respect to composite structure as well as application field. A conclusion was drawn that the polymer-based ME composites would be feasible as flexible devices or functional membranes in the near future.