• Title/Summary/Keyword: Multidirectional side-firing

Search Result 3, Processing Time 0.016 seconds

Fabrication of a Multidirectional Side-firing Optical Fiber Tip and Its Numerical Analysis (다방향 조사가 가능한 광섬유 팁 해석 및 제작)

  • Jung, Deok;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Jin-Hyeok;Kim, Changhwan;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.200-206
    • /
    • 2014
  • In this paper, using the value theoretically calculated to emit multidirectionally a beam coming into an optical fiber with diameter of $125{\mu}m$, we modeled and produced a cone-shaped structure at the distal end of the fiber. A numerical simulation was performed for an optical fiber tip in which all incident beams were totally reflected and emitted toward the side, as well as for an optical fiber tip from which the beams could be emitted forward and sideways simultaneously. We produced multidirectional-firing optical fiber tips based on the simulation result and model. Laser fabrication of the optical fiber was done by processing a cone-shaped structure at the distal end of an optical fiber with diameter of $125{\mu}m$ using a femtosecond pulsed laser and polishing the processed surface with a $CO_2$ laser. We also conducted an analysis to compare experimental and simulation results.

Laser Microfabrication of Multidirectional Side-fire Optical Fiber Tip (전방과 측면 방사 조절이 가능한 의료용 광섬유 팁 가공 기술)

  • Jung, Deok;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Jin-Hyeok;Kim, Changhwan;Lee, Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1017-1022
    • /
    • 2013
  • Currently, various optical fiber tips are used to deliver laser beam for endoscopic surgery. In this paper, we demonstrated multidirectional (forward and side) firing optical fiber tip using a femtosecond micromachining and $CO_2$ laser polishing technology. We controlled the edge width of optical fiber tip, by modulating the condition of $CO_2$ laser, to regulate the amount of side and forward emission. The distal end of the optical fiber with core/clad diameter of $400/440{\mu}m$ was microstructured with cone shape by using a femtosecond laser. And then the microstructured optical fiber tip was polished by $CO_2$ laser beam result in smoothing and specular reflection at the surface of the cone structure. Finally, we operated the LightTools simulation and good agreement was generally found between the proposed model and experimental simulation.

CO2 Laser micro-structuring of optical fiber with negative conical shape (CO2 레이저를 이용한 음각 원뿔 구조 광섬유 팁 가공 최적화 연구)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Jung, Deok;Kim, Young-Sup;Lee, Ho;Kim, Chang-Hwan
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • A helical fabricating method using $CO_2$ laser was utilized for producing cone-shaped structure on a silica substrate. Output power and the number of scanning radiation were modified in order to control the structure. The experiment shows that the depth and width of cone-shape were increased with higher output power of the laser and the number of scanning. We demonstrate fabrication of multidirectional side-firing optical fiber with diameter of 440 um using the $CO_2$ laser fabrication technique.