• Title/Summary/Keyword: Multicomponent separation

Search Result 23, Processing Time 0.02 seconds

AM-FM Decomposition and Estimation of Instantaneous Frequency and Instantaneous Amplitude of Speech Signals for Natural Human-robot Interaction (자연스런 인간-로봇 상호작용을 위한 음성 신호의 AM-FM 성분 분해 및 순간 주파수와 순간 진폭의 추정에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.53-70
    • /
    • 2005
  • A Vowel of speech signals are multicomponent signals composed of AM-FM components whose instantaneous frequency and instantaneous amplitude are time-varying. The changes of emotion states cause the variation of the instantaneous frequencies and the instantaneous amplitudes of AM-FM components. Therefore, it is important to estimate exactly the instantaneous frequencies and the instantaneous amplitudes of AM-FM components for the extraction of key information representing emotion states and changes in speech signals. In tills paper, firstly a method decomposing speech signals into AM - FM components is addressed. Secondly, the fundamental frequency of vowel sound is estimated by the simple method based on the spectrogram. The estimate of the fundamental frequency is used for decomposing speech signals into AM-FM components. Thirdly, an estimation method is suggested for separation of the instantaneous frequencies and the instantaneous amplitudes of the decomposed AM - FM components, based on Hilbert transform and the demodulation property of the extended Fourier transform. The estimates of the instantaneous frequencies and the instantaneous amplitudes can be used for modification of the spectral distribution and smooth connection of two words in the speech synthesis systems based on a corpus.

  • PDF

Separation of Linear and Elliptic Particle Motions Using Multi-Component Complex Trace Analysis (다성분 복소트레이스 분석법에 기초한 선형 및 타원형 입자운동 분리)

  • Kim, Ki-Young;Lee, So-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.246-254
    • /
    • 2009
  • We developed a novel polarization filter to separate linearly polarized waves from elliptically polarized waves in an infinite homogeneous medium and at the free surface using methods of multicomponent complex trace analysis. Sensitivity to filter parameters were examined using synthetic data simulating particle motions in a homogeneous medium. For known amplitude ratios of horizontal-to-vertical components of P and Rayleigh waves $C_L$ and $C_R$, respectively, the polarization filter precisely removes Rayleigh waves. Errors in the vertical and horizontal components of the filtered results increase with the ratio $C_R$/$C_L$ and the product $C_R$.$C_L$, respectively. The vertical component errors also increase rapidly as the ratios of applied-to-modeled values of $C_L$ and $C_R$ ($C_L'$/$C_L$ and $C_R'$/$C_R$) decrease, and are sensitive to $C_R'$/$C_R$ and $C_L'$/$C_L$ for small and large incidence angles, respectively. Errors of the filter are exactly the same for shear waves when the incidence angle is the supplementary of P-wave incidence angle.

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).