• 제목/요약/키워드: Multiclass SVM

검색결과 35건 처리시간 0.033초

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법 (A Novel Feature Selection Method for Output Coding based Multiclass SVM)

  • 이영주;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.795-801
    • /
    • 2013
  • 서포트 벡터 머신은 뛰어난 일반화 성능에 힘입어 다양한 분야에서 의사 결정 나무나 인공 신경망에 비해 더 좋은 분류 성능을 보이고 있기 때문에 최근 널리 사용되고 있다. 서포트 벡터 머신은 기본적으로 이진 분류 문제를 위하여 설계되었기 때문에 서포트 벡터 머신을 다중 클래스 문제에 적용하기 위한 방법으로 다중 이진 분류기의 출력 결과를 이용하는 출력 코딩 방법이 주로 사용되고 있다. 그러나 출력 코딩 기반 서포트 벡터 머신에 사용된 기존 특징 선택 기법은 각 분류기의 정확도 향상을 위한 특징이 아니라 전체 분류 정확도 향상을 위한 특징을 선택하고 있다. 본 논문에서는 출력 코딩 기반 서포트 벡터 머신의 각 이진 분류기의 분류 정확도를 최대화하는 특징을 각각 선택하여 사용함으로써, 전체 분류 정확도를 향상시키는 특징 선택 기법을 제안한다. 실험 결과는 제안 기법이 기존 특징 선택 기법에 비하여 통계적으로 유의미한 분류 정확도 향상이 있었음을 보여주었다.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류 (Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type)

  • 김양석;이도환;김성국
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1681-1689
    • /
    • 2010
  • Support Vector Machine(SVM)을 이용한 회전기계 진단 연구가 많이 수행되어 왔으나 결함 분류성능은 입력 특징과 더불어 다중 분류 방법, 이진분류기, 커널함수 등에 따라 다르다. SVM 을 이용한 대부분의 기존 연구들은 한번 입력 특징들을 선정하면 결함 분류시 동일한 특징데이터를 이용한다. 본 논문에서는 회전기계의 다양한 결함조건에서 측정한 진동신호로부터 추출한 통계적 특징들을 이용하여 각각의 결함을 분류하기 위한 최적 특징들을 선정한 후, 해당 결함상태를 분류하기 위한 SVM 학습과 분류에 각각 이용하였다. 실험자료를 이용한 검증 결과, 제안한 단계 분류 방법이 상대적으로 적은 학습시간으로 단일 다중 분류 방법과 유사한 분류 성능을 얻을 수 있었다.

핸드 제스처를 인식하는 손동작 추적 (Hand Movement Tracking and Recognizing Hand Gestures)

  • 박광채;배철수
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3971-3975
    • /
    • 2013
  • 본 논문은 핸드 제스쳐에 의해 증강현실 내의 가상 객체 제어기술로, HOG기반의 핸드 제스쳐 인식을 제안하고 있다. 인식을 위한 특징점들은 HOG불럭들에 의하여 결정되며, 크기가 다른 여러 불럭들을 시험하여 가장 적절한 불럭구성을 결정하며, AdaBoostSVM기법을 사용하여 분류 목적에 가장 적절한 불럭들을 추출한다. 실험 결과 핸드 제스쳐 인식률은 94% 이었다.

성대진동 및 성별이 미국영어 마찰음에 미치는 효과에 관한 코퍼스 기반 연구 (A corpus-based study on the effects of voicing and gender on American English Fricatives)

  • 윤태진
    • 말소리와 음성과학
    • /
    • 제10권2호
    • /
    • pp.7-14
    • /
    • 2018
  • The paper investigates the acoustic characteristics of English fricatives in the TIMIT corpus, with a special focus on the role of voicing in rendering fricatives in American English. The TIMIT database includes 630 talkers and 2,342 different sentences, and comprises more than five hours of speech. Acoustic analyses are conducted in the domain of spectral and temporal properties by treating gender, voicing, and place of articulation as independent factors. The results of the acoustic analyses revealed that acoustic signals interact in a complex way to signal the gender, place, and voicing of fricatives. Classification experiments using a multiclass support vector machine (SVM) revealed that 78.7% of fricatives are correctly classified. The majority of errors stem from the misclassification of /θ/ as [f] and /ʒ/ as [z]. The average accuracy of gender classification is 78.7%. Most errors result from the classification of female speakers as male speakers. The paper contributes to the understanding of the effects of voicing and gender on fricatives in a large-scale speech corpus.

적외선 영상에서의 시계열 특징 추출을 이용한 Gunnery 분류 기법 연구 (Gunnery Classification Method Using Profile Feature Extraction in Infrared Images)

  • 김재협;조태욱;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.43-53
    • /
    • 2014
  • Gunnery 표적으로부터 발생하는 영상특징은 장비의 위치를 탐지하고 종류를 판별하는 주요 정보로 활용될 수 있다. 본 논문에서는 Gunnery 영상에서 표적 영역의 밝기값을 획득하여 특징을 추출하고 분류하는 기법을 제안한다. 제안하는 기법에서는 38~40개의 신호 기반 특징과 2개의 모델 기반 특징을 추출하여 분석하고 분류모델에 적용한다. 다중 클래스 분류를 위하여 트리(tree) 기반의 분류 모델을 설계하였으며, 시스템에서 요구하는 Gunnery의 종류와 특성에 따라 유사도를 정의하여 트리 구조를 설계하였다. 트리 구성 단계에서는 각 레벨마다 SVM(Support Vector Machine)을 이용하여 분류 하였으며 시스템에서 요구하는 분류 성능을 만족함을 확인하였다.

진동데이터 적용 모델기반 이상진단 (Model-based Fault Diagnosis Applied to Vibration Data)

  • 양지혁;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템 (The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning)

  • 국중진
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

A Study on Comparison of Lung Cancer Prediction Using Ensemble Machine Learning

  • NAM, Yu-Jin;SHIN, Won-Ji
    • 한국인공지능학회지
    • /
    • 제7권2호
    • /
    • pp.19-24
    • /
    • 2019
  • Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.