• Title/Summary/Keyword: Multicast Routing Algorithm

Search Result 99, Processing Time 0.031 seconds

Solving Cluster Based Multicast Routing Problems Using A Simulated Annealing Algorithm (시뮬레이티디 어닐링 알고리즘을 이용한 클러스터 기반의 멀티캐스트 라우팅 문제 해법)

  • Kang Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • This paper proposes a Simulated Annealing(SA) algorithm for cluster-based Multicast Routing problems. Multicasting, the transmission of data to a group, can be solved from constructing multicast tree, that is. the whole network is partitioned to some clusters and the clusters are constructed by multicast tree. Multicast tree can be constructed by minimum-cost Steiner tree. In this paper, an SA algorithm is used in the minimum-cost Steiner tree. Especially, in SA, the cooling schedule is an important factor for the algorithm. Hence, in this paper, a cooling schedule is proposed for SA for multicast routing problems and analyzed the simulation results.

  • PDF

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

Multicast Routing Algorithm for QoS Improvement in the Wire/wireless Integrated Environment (유무선 통합 환경에서 QoS 향상을 위한 멀티캐스트 라우팅 알고리즘)

  • 김미혜
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.525-532
    • /
    • 2004
  • In this paper, we proposed a multicast routing algorithm for QoS improvement in the wire/wireless integrated environment. We analyzed requests and characteristics of QoS, and then proposed a new algorithm that can improve QoS by adding node mobility to wire environment. This new algorithm constructs a dynamic multicast tree that can prevent a loss of packet and save the bandwidth. As a result of simulations comparing to another multicast algorithms, we showed that this new algorithm can simply and dynamically adjusts the construction of multicast tree with little delay and the most reducible bandwidth resources.

Efficient Implementations of a Delay-Constrained Least-Cost Multicast Algorithm

  • Feng, Gang;Makki, Kia;Pissinou, Niki
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.246-255
    • /
    • 2002
  • Constrained minimum Steiner tree (CMST) problem is a key issue in multicast routing with quality of service (QoS) support. Bounded shortest path algorithm (BSMA) has been recognized as one of the best algorithms for the CMST problem due to its excellent cost performance. This algorithm starts with a minimumdelay tree, and then iteratively uses a -shortest-path (KSP) algorithm to search for a better path to replace a “superedge” in the existing tree, and consequently reduces the cost of the tree. The major drawback of BSMA is its high time complexity because of the use of the KSP algorithm. For this reason, we investigate in this paper the possibility of more efficient implementations of BSMA by using different methods to locate the target path for replacing a superedge. Our experimental results indicate that our methods can significantly reduce the time complexity of BSMA without deteriorating the cost performance.

Hop-constrained multicast route packing with bandwidth reservation

  • Gang Jang Ha;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.402-408
    • /
    • 2002
  • Multicast technology allows the transmission of data from one source node to a selected group of destination nodes. Multicast routes typically use trees, called multicast routing trees, to minimize resource usage such as cost and bandwidth by sharing links. Moreover, the quality of service (QoS) is satisfied by distributing data along a path haying no more than a given number of arcs between the root node of a session and a terminal node of it in the routing tree. Thus, a multicast routing tree for a session can be represented as a hop constrained Steiner tree. In this paper, we consider the hop-constrained multicast route packing problem with bandwidth reservation. Given a set of multicast sessions, each of which has a hop limit constraint and a required bandwidth, the problem is to determine a set of multicast routing trees in an arc-capacitated network to minimize cost. We propose an integer programming formulation of the problem and an algorithm to solve it. An efficient column generation technique to solve the linear programming relaxation is proposed, and a modified cover inequality is used to strengthen the integer programming formulation.

  • PDF

A Rendezvous Router Decision Algorithm Considering Routing Table Size (라우팅 테이블의 크기를 고려한 랑데부 라우터 선정 알고리즘)

  • Cho, Kee-Seong;Jang, Hee-Seon;Kim, Dong-Whee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.905-912
    • /
    • 2006
  • Depending on the location of the rendezvous point (RP), the network efficiency is determined in the core based tree (CBT) or protocol independent multicast-sparse mode (PIM-5M) multicasting protocol to provide the multicast services based on the shared tree. In this paper, a new algorithm to allocate the RP using the estimated values of the total cost and the size(number of entries) of the routing tables is proposed for efficiently controlling the cost and the number of routing table entries. The numerical results show that the proposed algorithm reduces the total cost in 5.37%, and the size of routing tables in 13.35% as compared to the previous algorithm.

Position-Based Multicast Routing in Mobile Ad hoc Networks: An Analytical Study

  • Qabajeh, Mohammad M.;Adballa, Aisha H.;Khalifa, Othman O.;Qabajeh, Liana K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1586-1605
    • /
    • 2012
  • With the prevalence of multimedia applications and the potential commercial usage of Mobile Ad hoc Networks (MANETs) in group communications, Quality of Service (QoS) support became a key requirement. Recently, some researchers studied QoS multicast issues in MANETs. Most of the existing QoS multicast routing protocols are designed with flat topology and small networks in mind. In this paper, we investigate the scalability problem of these routing protocols. In particular, a Position-Based QoS Multicast Routing Protocol (PBQMRP) has been developed. PBQMRP builds a source multicast tree guided by the geographic information of the mobile nodes, which helps in achieving more efficient multicast delivery. This protocol depends on the location information of the multicast members which is obtained using a location service algorithm. A virtual backbone structure has been proposed to perform this location service with minimum overhead and this structure is utilized to provide efficient packet transmissions in a dynamic mobile Ad hoc network environment. The performance of PBQMRP is evaluated by performing both quantitative analysis and extensive simulations. The results show that the used virtual clustering is very useful in improving scalability and outperforms other clustering schemes. Compared to On-Demand Multicast Routing Protocol (ODMRP), PBQMRP achieves competing packet delivery ratio and significantly lower control overhead.

A dynamic multicast routing algorithm in ATM networks (ATM 망에서 동적 멀티캐스트 루팅 알고리즘)

  • 류병한;김경수;임순용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2477-2487
    • /
    • 1997
  • In this paepr, we propose a dynamic multicast routin algorithm for constructing the delay-constrained minimal spanning tree in the VP-based ATM networks, in which we consider the effiiciency enen in the case wheree the destination dynamically joins/departs the multicast connection. For constructing the delay-constrained spanning tree, we frist generate a reduced network consisting of only VCX nodes from a given ATM network, originally consisting of VPX/VCX nodes. Then, we obtain the delay-constrained spanning tree with a minimal tree cost on the reduced network by using our proposed heuristic algorithm. Through numerical examples, we show that our dynamic multicast routing algorithm can provide an efficient usage of network resources when the membership nodes frequently changes during the lifetime of a multicast connection. We also demonstrate the more cost-saving can be expected in dense networks when applyingour proposed algorithm.

  • PDF

A Distributed Low-cost Dynamic Multicast Routing Algorithm with Delay Constraints (지연시간을 고려한 최소비용의 동적 멀티캐스트 라우팅 알고리즘)

  • Sin, Min-U;Im, Hyeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.180-187
    • /
    • 2002
  • Many real-time multimedia applications, such as video conferencing have stringent end-to-end delay constraints and consume large amount of network resources. In order to support these applications efficiently, multicast routing algorithms computing least cost multicast trees that satisfy a given end-to-end delay constraint are needed. However, finding such a tree is known to be computationally expensive. Therefore, we propose a heuristic distributed multicast routing algorithm that reduces a “finding multicast tree”that satisfies a given end-to-end delay constraint and minimizes the average resulting tree cost. Also, simulation results show that the proposed algorithm has much better average cost performance than other existing algorithms.

A Study on Virtual Source-based Differentiated Multicast Routing and Wavelength Assignment Algorithms in the Next Generation Optical Internet based on DWDM Technology (DWDM 기반 차세대 광 인터넷 망에서 VS기반의 차등화된 멀티캐스트 라우팅 및 파장할당 알고리즘 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.658-668
    • /
    • 2011
  • Over the past decade, the improvement of communications technologies and the rapid spread of www (World Wide Web) have brought on the exponential growth of users using Internet and real time multimedia multicast services like video conferencing, tele-immersive virtual reality, and Internet games. The dense-wavelength division multiplexing (DWDM) networks have been widely accepted as a promising approach to meet the ever-increasing bandwidth demands of Internet users, especially in next generation Internet backbone networks for nation-wide or global coverage. A major challenge in the next generation Internet backbone networks based on DWDM technologies is the resolution of the multicasting RWA (Routing and Wavelength Assignment) problem; given a set of wavelengths in the DWDM network, we set up light-paths by routing and assigning a wavelength for each connection so that the multicast connections are set-upped as many as possible. Finding such optimal multicast connections has been proven to be Non-deterministic Polynomial-time-complete. In this paper, we suggest a new heuristic multicast routing and wavelength assignment method for multicast sessions called DVS-PMIPMR (Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing algorithm). We measured the performance of the proposed algorithm in terms of number of wavelength and wavelength channel. The simulation results demonstrate that DVS-PMIPMR algorithm is superior to previous multicast routing algorithms.