• Title/Summary/Keyword: Multibeam sonar

Search Result 17, Processing Time 0.025 seconds

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

A Study on Fusion and Visualization using Multibeam Sonar Data with Various Spatial Data Sets for Marine GIS

  • Kong, Seong-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.407-412
    • /
    • 2010
  • According to the remarkable advances in sonar technology, positioning capabilities and computer processing power we can accurately image and explore the seafloor in hydrography. Especially, Multibeam Echo Sounder can provide nearly perfect coverage of the seafloor with high resolution. Since the mid-1990's, Multibeam Echo Sounders have been used for hydrographic surveying in Korea. In this study, new marine data set as an effective decision-making tool in various fields was proposed by visualizing and combining with Multibeam sonar data and marine spatial data sets such as satellite image and digital nautical chart. The proposed method was tested around the port of PyeongTaek-DangJin in the west coast of Korea. The Visualization and fusion methods are described with various marine data sets with processing. We demonstrated that new data set in marine GIS is useful in safe navigation and port management as an efficient decision-making tool.

Generating Stereoscopic Sonar Images by using Multibeam Data (멀티빔 자료를 이용한 실체 소나 이미지 구현)

  • Chung, Chul-Hoon;Kim, Jin-Hoo;Kim, Dong-Hwi;Kim, Sung-Bo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.199-200
    • /
    • 2006
  • This paper describes how to generate stereoscopic sonar images by using multibeam data. Both parallel and crossing methods were used to create stereoscopic vision of the seafloor. Stereoscopic sonar images might provide reality and more detailed information of the target and the seafloor topography.

  • PDF

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

A Study of Improve on a Backscatter Data of Multibeam Echo-sounder Using Digital Image Processing (디지털 영상처리기법를 이용한 멀티빔 음향측심기의 음압자료 향상 연구)

  • Hye-Won Choi;Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Accurate measurement of seafloor topography plays a crucial role in developing marine industries such as maritime safety, resource exploration, environmental protection, and coastal management. The seafloor topography is constructed using side scan sonar (SSS) and single beam echosounder (SBES) or multibeam echosounder (MBES), which transmit and receive ultrasound waves through a device attached to a marine survey vessel. However, the use of a sonar system is affected by noise pollution areas, and the single beam has a limited scope of application. At the same time, the multibeam is mainly applicable for depth observation. For these reasons, it is difficult to determine the boundaries and areas of seafloor topography. Therefore, this study proposes a method to improve the backscatter data of multibeam echosounder, which has a relationship with the seafloor quality, by using digital image processing to classify the shape of the underwater surface.

Numerical modeling and simulation technique in time-domain for multibeam echo sounder

  • Jung, Donghwan;Kim, Jeasoo;Byun, Gihoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • A Multibeam Echo Sounder (MBES) is commonly used for rapid seafloor mapping. We herein present a time-domain integrated system simulation technique for MBES development. The Modeling and Simulation (M&S) modules consist of four parts: sensor array signal transmission, propagation and backscattering modeling in the ocean environment, beamforming of the received signals, and image processing. Also, the simulation employs a ray-theory-based algorithm to correct the reconstructed bathymetry, which has errors due to the refraction caused by the vertical sound velocity profile. The developed M&S technique enables design parameter verification and system parameter optimization for MBES. The framework of this technique can also be potentially used to characterize the seabed properties. Finally, typical seafloor images are presented and discussed.

A Digital Bathymetric Model combining Multi Beam Echo Sounder and Sidescan Sonar

  • Park, Jo-Seph;Kim, Hik-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.330-330
    • /
    • 2002
  • The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.

  • PDF

A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters (소나 플랫폼의 운동 파라미터에 따른 합성개구소나 영상 왜곡의 정량적 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • Synthetic aperture sonars as well as side scan sonars or multibeam echo sounders have been commercialized and are widely used for seafloor imaging. In Korea related research such as the development of a towed synthetic aperture sonar system is underway. In order to obtain high-resolution synthetic aperture sonar images, it is necessary to accurately estimate the platform motion on which it is installed, and a precise underwater navigation system is required. In this paper we are going to provide reference data for determining the required navigation accuracy and precision of navigation sensors by quantitatively analyzing how much distortion of the sonar images occurs according to motion characteristics of the platform equipped with the synthetic aperture sonar. Five types of motions are considered and normalized root mean square error is defined for quantitative analysis. Simulation for error analysis with parameter variation of motion characteristics results in that yaw and sway motion causes the largest image distortion whereas the effect of pitch and heave motion is not significant.

Hydrographic Survey Data Processing Sl Automatic Inventory Archiving System for Nautical Chart (해도제작을 위한 해양탐사자료의 처리 및 탐사 기록 자동생성 시스템 개발)

  • 박요섭;김학일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.218-223
    • /
    • 1999
  • 국제 수로 기구(IHO, International Hydrographic Organization)에서는 해도제작을 위한 해양조사의 기준을 마련하고, 전세계적으로 사용되는 해도의 정확도를 표준화하고 있다. IHO에서는 탐사 기술의 발달을 반영하여, 기존의 단 빔 음향 측심기 이외에도 멀티 빔 음향 측심기(Multibeam Echo Sounder)와 사이드 스캔 소나(Side Scan Sonar)를 이용한 해양 탐사 시에 요구되는 정확도와 탐사 자료에 대한 메타 데이터(Metadata)의 작성을 요구하고 있다. 본 논문은 수로 측량에서 얻어진 측량 자료들의 처리절차와 자료관리 기법에 대한 연구이다. IHO 해양탐사 기준에 맞는 탐사 자료 처리와, 메타 데이터를 자동으로 생성하여 측량자료관리 DB구축 및 관리를 주 기능으로 하는 시스템을 설계하고 구현한다. 특히, 본 논문은 해양 탐사 자료 처리 시스템을 개발하기 위하여, 해양 자료 처리 과정을 표준화하고, 국제적 해양 자료의 교환 표준인 MGD77과 호환 가능한 메타 데이터를 자동 생성하며, 1Hz로 수집되는 GPS 측위자료로부터 특징점(Waypoint)을 정의하고, 이를 추출하여 측심선을 벡터화 (Trackline Vectorizing) 하는 알고리즘을 구현한다. 개발된 시스템은 현재 국립 해양조사원의 해양2000호에서 획득된 탐사자료에 적용, 운영되고 있다.

  • PDF

First Trial of the State of the Art Acoustic Systems Mounted on the R/V Tamgu 21 (수산자원전용조사선 탐구 21호에 탑재된 최첨단 음향장비 소개와 첫 시험조사)

  • Hwang, Kangseok;Lee, Jeong-hoon;Park, Jeong-Ho;Cha, Hyung Kee;Choi, Jung Hwa;Lee, Hyungbeen;Park, Junseong;Kang, Myounghee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.4
    • /
    • pp.509-515
    • /
    • 2016
  • At the first time in South Korea, the state of the art acoustic systems were mounted on the R/V Tamgu 21. The acoustic systems are an EK80 broadband echosounder (18, 38, 70, 120, 200 and 333 kHz) which has two beam modes such as continuous wave (narrowband) and frequency modulation (broadband), an ME70 multibeam echosounder (70-120 kHz), and a SH90 sonar (111.5-115.5 kHz). Acoustic data from broadband mode have a very short range resolution, a large detection range, a high signal to noise ratio, and a wide and consecutive frequency response. In ME70, each individual beam consisted in a multibeam plays a role as a spilt beam. The first trial of the cutting edge acoustic system installed on the R/V Tamgu 21 was conducted from 15 Feb to 29 Feb 2016 in East Sea, South Sea and East China Sea. The properties of the acoustic systems were elucidated and exploratory results from three systems were exhibited. Lastly, issues which should be considered and future research plan are mentioned.