• Title/Summary/Keyword: Multibeam Forming

Search Result 3, Processing Time 0.019 seconds

Study on Multibeam Forming with Improved Accuracy of Steering Angle and Sidelobe Control (높은 조향 정확도 및 부엽 제어가 가능한 다중 빔 형성 연구)

  • Chi, Sang Wook;Lee, Chang-Hyun;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.449-456
    • /
    • 2018
  • Herein, several multibeam forming methods that can be applied to microwave wireless power transmission are presented. Because the conventional multibeam forming methods do not consider an active element pattern(AEP), an intended beam shape will contain a steering angle error when applied to an actual system. To solve this problem, a method of considering the average of the AEP and a method of considering all the AEPs by the modified Fourier series method have been proposed. We confirmed that the proposed method reduces the error with the intended beam shape in the multibeam formation. In addition, for the side lobe level(SLL) and null control, a method of multibeam forming by applying the superposition principle to the Dolph-Tschebyscheff method is proposed. We also confirmed that SLL control can be simultaneously achieved with the multibeam formation.

Analysis of the Required Limit on APAA Aperture using Statistical Simulation for HAPS

  • Ku, Bon-Jun;Park, Jong-Min;Kim, Yang-Su;Ahn, Do-Seob
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1335-1338
    • /
    • 2002
  • This paper presents the analysis of the required limit on a multibeam active phased array antenna (APAA) aperture using the statistical simulation for a High Altitude Platform Station (HAPS). The simulation takes into account the random errors caused by the non-identity of the array elements and the inaccuracy of the antenna calibration. The results of our statistical simulation show that the strict requirements on the sidelobe envelope for HAPSs can be met when the amplitude and phase distribution errors are minor, a condition which may be achieved by using digital beam forming.

  • PDF

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).