• Title/Summary/Keyword: MultiCAMShift

Search Result 6, Processing Time 0.023 seconds

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

Real-Time Human Tracking Using Skin Area and Modified Multi-CAMShift Algorithm (피부색과 변형된 다중 CAMShift 알고리즘을 이용한 실시간 휴먼 트래킹)

  • Min, Jae-Hong;Kim, In-Gyu;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1132-1137
    • /
    • 2011
  • In this paper, we propose Modified Multi CAMShift Algorithm(Modified Multi Continuously Adaptive Mean Shift Algorithm) that extracts skin color area and tracks several human body parts for real-time human tracking system. Skin color area is extracted by filtering input image in predefined RGB value range. These areas are initial search windows of hands and face for tracking. Gaussian background model prevents search window expending because it restricts skin color area. Also when occluding between these areas, we give more weights in occlusion area and move mass center of target area in color probability distribution image. As result, the proposed algorithm performs better than the original CAMShift approach in multiple object tracking and even when occluding of objects with similar colors.

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

Human Body Tracking and Pose Estimation Using CamShift Based on Kalman Filter and Weighted Search Windows (칼만 필터와 가중탐색영역 CAMShift를 이용한 휴먼 바디 트래킹 및 자세추정)

  • Min, Jae-Hong;Kim, In-Gyu;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.545-552
    • /
    • 2012
  • In this paper, we propose Modified Multi CAMShift Algorithm based on Kalman filter and Weighted Search Windows(KWMCAMShift) that extracts skin color area and tracks several human body parts for real-time human tracking system. We propose modified CAMShift algorithm that generates background model, extracts skin area of hands and head, and tracks the body parts. Kalman filter stabilizes tracking search window of skin area due to changing skin area in consecutive frames. Each occlusion areas is avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed KWMCAMShift algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.

Text Cues-based Image Matching Method for Navigation (네비게이션을 위한 문자영상기반의 영상매칭 방법)

  • Park, An-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.631-633
    • /
    • 2005
  • 유비쿼터스 시대가 다가오면서, 많은 사람들은 모르는 장소에서 자신의 위치와 목적지까지의 경로에 대한 정보를 알고 싶어할 것이다. 기존의 네비게이션(navigation)을 위한 비전기술은 고차원과 저차원 특징값을 이용하였다. 텍스춰 정보, 색상 히스토그램과 같은 저차원 특징값은 영상의 특징을 정확하게 표현하기 어려우며, 마커와 같은 고차원 정보는 실험환경을 구축하는데 어려움이 있다. 우리는 기존 저/고차원의 특징값 대신, 영상의 특징을 표현하고 인덱싱(indexing)하기 위한 유용한 정보를 많이 포함하고 있으며, 실제환경에서 널리 분포되어있는 중차원 특징값인 문자영상을 이용한다. 문자영상추출은 MLP(Multi-layer perceptron)와 CAMShift알고리즘을 결합한 방법을 이용하며, 서로 다른 장소지만 같은 문자를 가진 곳에서 인식을 수행하기 위해 문자영상의 크기와 기울기를 기반으로 한 영상 검색공간을 대상으로 영상매칭을 수행한다. 실험에서 문자영상을 포함하는 직사각형 검색공간으로 인해 다양한 크기와 기울기에서 높은 인식률을 보이며, 간단한 계산으로 빠른 수행시간을 가진다.

  • PDF

PDA-based Text Extraction System using Client/Server Architecture (Client/Server구조를 이용한 PDA기반의 문자 추출 시스템)

  • Park Anjin;Jung Keechul
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • Recently, a lot of researches about mobile vision using Personal Digital Assistant(PDA) has been attempted. Many CPUs for PDA are integer CPUs, which have no floating-computation component. It results in slow computation of the algorithms peformed by vision system or image processing, which have much floating-computation. In this paper, in order to resolve this weakness, we propose the Client(PDA)/server(PC) architecture which is connected to each other with a wireless LAN, and we construct the system with pipelining processing using two CPUs of the Client(PDA) and the Server(PC) in image sequence. The Client(PDA) extracts tentative text regions using Edge Density(ED). The Server(PC) uses both the Multi-1.aver Perceptron(MLP)-based texture classifier and Connected Component(CC)-based filtering for a definite text extraction based on the Client(PDA)'s tentativel99-y extracted results. The proposed method leads to not only efficient text extraction by using both the MLP and the CC, but also fast running time using Client(PDA)/server(PC) architecture with the pipelining processing.