• Title/Summary/Keyword: Multi-user MIMO

Search Result 132, Processing Time 0.028 seconds

Triangulation Algorithm for Multi-user Spatial Multiplexing in MIMO Downlink Channels (MIMO 다운링크 채널에서 다중사용자 공간다중화를 위한 알고리즘)

  • Lee, Heun-Chul;Paulraj, Aroyaswami;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.45-54
    • /
    • 2010
  • This paper studies the design of a multiuser multiple-input multiple-output (MIMO) system, where a base station (BS) transmits independent messages to multiple users. The remarkable "dirty paper coding (DPC)" result was first presented by Costa that the capacity does not change if the Gaussian interference is known at the transmitter noncausally. While several implementable DPC schemes have been proposed recently for single-user dirty-paper channels, DPC is still difficult to implement directly in practical multiuser MIMO channels. In this paper, we propose a network channel matrix triangulation (NMT) algorithm for utilizing interference known at the transmitter. The NMT algorithm decomposes a multiuser MIMO channel into a set of parallel, single-input single-output dirty-paper subchannels and then successively employs the DPC to each subchannel. This approach allows us to extend practical single-user DPC techniques to multiuser MIMO downlink cases. We present the sum rate analysis for the proposed scheme. Simulation results show that the proposed schemes approach the sum rate capacity of the multiuser MIMO downlink at moderate signal-to-noise ratio (SNR) values.

Multi-User Transmission Exploiting Multiple Dual-Polarized Antennas (이중 편파 다중 안테나를 이용한 다중 사용자 전송)

  • Shin, Changyong;Park, Youn Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.774-776
    • /
    • 2014
  • In this paper, we propose a multiple dual-polarized antenna system for multi-user transmission in line-of-sight (LoS) dominant channel environments. By exploiting space and polarization resources efficiently, the proposed system achieves a higher sum rate than the existing multi-user multiple input multiple output (MU-MIMO) system with uni-polarized antennas.

Novel User Selection Algorithm for MU-MIMO Downlink System with Block Diagonalization (Block Diagonalization을 사용하는 하향링크 시스템에서의 MU-MIMO 사용자 스케쥴링 기법)

  • Kim, Kyunghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2018
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) is the core technology for improving the channel capacity compared to Single-User MIMO (SU-MIMO) by using multiuser gain and spatial diversity. Key problem for the MU-MIMO is the user selection which is the grouping the users optimally. To solve this problem, we adopt Extreme Value Theory (EVT) at the beginning of the proposed algorithm, which defines a primary user set instead of a single user that has maximum channel power according to a predetermined threshold. Each user in the primary set is then paired with all of the users in the system to define user groups. By comparing these user groups, the group that produces a maximum sum rate can be determined. Through computer simulations, we have found that the proposed method outperforms the conventional technique yielding a sum rate that is 0.81 bps/Hz higher when the transmit signal to noise ratio (SNR) is 30 dB and the total number of users is 100.

Power Loss Analysis of Block Tomlinson-Harashima Precoder for Multi-user MIMO Systems (다중 사용자 다중 입출력 시스템을 위한 Block Tomlinson-Harashima 전처리 기법의 전력 손실 분석)

  • Kim, Joon-Doo;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.12-18
    • /
    • 2012
  • In this paper, we propose an improved analysis of transmission power of BTHP applied into the downlink multi-user (MU) multi-input multi-output (MIMO) system. On the contrary to the conventional analysis that adopts the strong interference assumption for every users in the system, the proposed analysis approximates the characteristics of the actual interference components so that provides more accurate approximation of the transmission power than that from the conventional analysis. By computer simulations, it is observed that the proposed approximation is more accurate than the conventional one, especially in the case of 4-QAM modulation.

Fixed-complexity Sphere Encoder for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 고정 복잡도를 갖는 스피어 인코더)

  • Mohaisen, Manar;Han, Dong-Keol;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.632-638
    • /
    • 2010
  • In this paper, we propose a fixed-complexity sphere encoder (FSE) for multi-user MIMO (MU-MIMO) systems. The Proposed FSE accomplishes a scalable tradeoff between performance and complexity. Also, because it has a parallel tree-search structure, the proposed encoder can be easily pipelined, leading to a tremendous reduction in the precoding latency. The complexity of the proposed encoder is also analyzed, and we propose two techniques that reduce it. Simulation and analytical results demonstrate that in a $4\times4$ MU-MIMO system, the complexity of the proposed FSE is 16% that of the conventional QRD-M encoder (QRDM-E). Also, the encoding throughput of the proposed endoder is 7.5 times that of the QRDM-E with tolerable degradation in the BER performance, while achieving the optimum diversity order.

A MU-MIMO User Scheduling Mechanism based on Active CSI Exchange (능동적 CSI 교환을 기반으로 한 MU-MIMO 유저 스케줄링 기법)

  • Lee, Kyu-Haeng;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.192-201
    • /
    • 2014
  • User scheduling boosts the Multi-User Multi-Input Multi-Output (MU-MIMO) gain by selecting an optimal set of users to increase the 802.11 Wi-Fi system capacities. Many kinds of user scheduling algorithms, however, fail to realize the advantages of MU-MIMO due to formidable Channel State Information (CSI) overhead. In this paper, we propose a user scheduling method considering such CSI exchange overhead and its MAC protocol, called ACE (Active CSI Exchange based User Scheduling for MU-MIMO Transmission). Unlike most proposals, where user scheduling is performed after an Access Point (AP) receives CSI from all users, ACE determines the best user set during the CSI exchange phase. In particular, the AP broadcasts a channel hint about previously scheduled users, and the remaining users actively send CSI reports according to their Effective Channel Gains (ECGs) calculated from the hint. Through trace-driven MATLAB simulations, we prove that the proposed scheme improves the throughput gain significantly.

Adaptive Modulation for Multi-user MIMO Broadcast Channels with Block Diagonal Geometric Mean Decomposition (다중 사용자 다중 안테나 브로드캐스트 채널에서의 기하평균 블록 대각화 기반의 적응적 변조 기법)

  • Choi, Seung-Kyu;Ham, Jae-Sang;Noh, Jee-Hwan;Lee, Chung-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.175-176
    • /
    • 2008
  • Exploiting block diagonal geometric mean decomposition (BD-GMD) for the multi-user MIMO broadcast channels, each user can achieve identical received SNRs for its subchannels. Thus, equal rate modulation can be applied to each user. Using BD-GMD, we can apply an adaptive modulation to each user with the required bit error rate (BER). In this paper, we propose an adaptive modulation algorithm for the multi-user MIMO broadcast channels with BD-GMD to maximize the system throughput satisfying the required BER performance.

  • PDF

Unified Optimal Power Allocation Strategy for MIMO Candidates in 3GPP HSDPA

  • Kim, Sung-Jin James;Kim, Ho-Jin;Lee, Kwang-Bok
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.768-776
    • /
    • 2005
  • We compare the achievable throughput of time division multiple access (TDMA) multiple-input multiple-output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum-rate capacity of space-time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi-user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi-user channel problems.

  • PDF

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

Generalized User Selection Algorithm im Downlink Multiuser MIMo System (하향링크 다중 사용자 MIMO 시스템에서의 일반화된 사용자 선택 알고리즘)

  • Kang, Dae Geun;Shin, Change Ui;Kuem, Dong Hyun;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.99-105
    • /
    • 2012
  • Recently, there are many user selection algorithms in multi user multiple-input multiple-output (MU-MIMO) systems. One of well-known user selection methods is Semi orthogonal user selection (SUS). It is an algorithm maximizing channel capacity. However, it is applicable only when user's antenna is one. We propose a generalized user selection algorithm regardless of the number of user's antennas. In the proposed scheme, Base station (Bs) selects the first user who has the highest determinant of channel and generates a user group that correlation with first user's channel is less than allowance of correlation. Then, each determinant of channels made up of first user's channel and a user's channel in the generated group is calculated and BS selects the next user who has the highest determinant of that. BS selects following users by repeating above procedure. In this paper, we get better performance because of selecting users who have the highest determinant of channel as well as allowance of correlation optimally calculated through matrix operations.