• Title/Summary/Keyword: Multi-type air conditioning system

Search Result 54, Processing Time 0.021 seconds

EEV Superheat Control of a Multi-type Heat Pump by Using Dither Signal (멀티형 히트펌프 전자팽창밸브의 디더 신호를 적용한 과열도 제어)

  • 한도영;표수환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electronic expansion valve (EEV) may be used to control the refrigerant flow rate for the multi-type heat pump. Stepping motor driven EEV may precisely control the refrigerant flow rate to meet each internal load requirement. To control the EEV, PI algorithm may be used. But the hysteresis of EEV deteriorates the performance of superheat control. To reduce the performance degradation, the PI algorithm along with the dither signal may be used. The dither signal, with about 10 times higher frequency than the system crossover frequency and about 10 times larger magnitude than the deadband of hysteresis, was selected for the superheat control of EEV. Experimental results showed the improvement of EEV control by adding the dither signal to the PI algorithm.

Analysis of the Gravity Effect on the Distribution of Refrigerant Flow in a Multi-circuit Condenser (다분지 응축기의 냉매유량 분배에 미치는 중력의 영향을 고려한 해석방법)

  • Lee Jangho;Kim Moo Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1167-1174
    • /
    • 2004
  • The method to consider gravity effect on the performance of a condenser is developed, and a simple condenser having 'nU' type two circuits is analyzed. Each circuit has the same length and inlet air-side operational conditions. The only difference between two circuits is the direction of refrigerant flow, which is exactly opposite each other between the upper 'n' type circuit and the lower 'U' type circuit. It is shown that the gravity makes the distribution of refrigerant flow uneven in the two circuits at lower refrigerant flow rates; heat transfer rate also becomes uneven. Moreover, much of the refrigerant exists as liquid state in the circuit having low refrigerant flow rate, which will make the cycle balance unstable in the refrigeration cycle system like a heat pump.

Thermal Analysis of a Liquid Hydrogen Vessel (액체수소 저장용기의 열해석)

  • Kim, Seo Young;Kang, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 1997
  • Thermal analysis has been performed to design a high-performance $LH_2$ vessel with about 1% per day evaporation loss. Analysis includes the combined insulations of MLI(Multi-Layer Insulation) and VCS (Vapor-Cooled Shield) under high vacuum. Combined insulation of MLI and VCS shows the existence of optimal location of VCS to minimize evaporation loss. Comparison of parallel-type DVCS (Double Vapor-Cooled Shield) and serial-type DVCS is also made to show the effectiveness of the system. The results indicate that the serial-type DVCS vessel is better than the parallel-type DVCS vessel with respect to overall evaporation loss. The combined insulation of SVCS (Single Vapor-Cooled Shield) with a partial MLI can give a similar performance characteristics compared to that with MLI and DVCS.

  • PDF

Performance characteristics of a multi type refrigerator (R600a를 이용한 소형 멀티형 냉장고 시스템의 성능특성에 대한 실험적 연구)

  • Ahn, Ji-Hoon;Jang, Yong-Hee;Kim, Yong-Chan;Jang, Ui-Young;Park, Yong-Jong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.292-297
    • /
    • 2008
  • Various types of refrigerators become popular in the market such as a common refrigerator, kimchi refrigerator and wine cellar. It is required to develop a multi function refrigerator which has different purposes in each evaporator. In this study, the performance of a multi type refrigerator system, which consists of one machine room and three evaporators, was measured in a bench type multi refrigerator. The multi type refrigerator system was tested by varying the number of refrigerator cabinet, refrigerant charge amount, temperature condition. Based on experimental data, the multi type refrigerator showed better performance than the conventional refrigerator(single type) At the same external load condition, the COP of the multi type refrigerator was $1.22{\sim}1.29$, but the COP of the single type refrigerator was 1.0.

  • PDF

Evaporator Superheat Control of a Multi-type Air-Conditioning/Refrigeration System (멸티형 공조/냉동시스템의 증발기 과열도 제어)

  • 김태섭;홍금식;손현철
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.253-265
    • /
    • 2001
  • This paper investigates a PI control problem for the evaporator superheat, i.e., temperature difference between the two-phase region and the exit region of an evaporator, for multi-type air-conditioning/refrigeration system. Mathematical model describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, two transfer function from the current input applied to an electronic expansion valve to the wall-temperatures of an evaporator tube at two-phase region and superheated region, respectively, are derived. The stability of the closed loop system with the PI controller designed it analyzed by using Nyquist stability criterion. Simulation results are provided.

  • PDF

Theoretical Analysis on the Applications of the Double-Floor Ondol System (이중 바닥 온돌 시스템의 응용에 관한 이론적 분석)

  • Choi, Won-Ki;Lee, Kang-Young;Lee, Hyun-Geun;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.355-363
    • /
    • 2007
  • The Korean traditional 'Ondol' system has been a target for innovation to meet the requirements of sustainable domestic building and low carbon emission energy utilization. Simulation techniques provide designers and researchers with powerful tools to predict heating load and thermal behaviour of Ondol systems installed in various contexts. However, there are few studies on Ondol models, especially associated with multi-stories buildings of which type covers about 50% of Korean housing stock. In this study, we analyzed the double floor Ondol system on the multi-stories buildings using the ESP-r program. On the basis of the double floor Ondol system, we suggested the new modelling method that is composed of the Vent zone and Ondol zone. Using the this model, sensitivity analysis was carried out to refine the applicability of the model taking account of control conditions, constructions, air change and air flow network method and CFD analysis using the FLUENT. The air layer has enough temperature to use in heating zone. It is suggested that the simplicity of the model will allow building designers and mechanical engineers easily to implement scenario-based assessments of design options as well as control strategies. Later, we will simulate the real buildings and analyze the air distributions using the Fluent according to the various conditions.

Verification experiment of a ground source multi-heat pump at heating season (지열원 멀티 히트펌프의 동절기 난방성능에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.52-57
    • /
    • 2009
  • This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated at heating season. The average COP of the systems with single U-tube and double tube type GLHXs were 4.8 and 5.0, respectively. It is needed to investigate the long term performance of double tube type GLHX, because the reduction of inlet temperature of OD HX for this GLHX was larger than it for U-tube GLHX.

  • PDF

Effect of the Orifice Area Ratio on the Exit Flow of a Multi-Perforated Tube (다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향)

  • Lee, Sang-Kyoo;Lee, Jee-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.317-323
    • /
    • 2013
  • A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.

Performance Test of a Multi-riser Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 다관형 순환유동층 열교환기 성능실험)

  • 전용두;이금배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2004
  • A lab-scale fluidized bed heat exchanger for waste gas heat recovery is devised and tested. Compared to our previous works on fluidized bed type system with a single riser, the present heat exchanger system is featured by its multiple (four) risers to handle increased amount of exhaust gas. Particles are introduced to the main hot gas stream alongside the pipe circumference near riser inlets. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

Performance Analysis of a Multi-type Inverter Heat Pump (멀티형 인버터 열펌프의 냉방성능해석에 관한 연구)

  • Kim, Y. C.;Park, G. W.;Youn, Y.;Min, M. K.;Choi, Y, D,
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2001
  • A system simulation program was developed for a multi-type inverter heat pump. Electronic expansion valve(EEV) was used to extend the capacity modulating range of the heat pump as expansion device. The program was also developed to calculate actual system performance with the building load variation with climate during a year. The performance variation of a multi-type hat pump with two EEV and an inverter compressor was simulated with compressor speed, capacity, and flow area of the EEV. As a result, the optimum operating frequency of the compressor and openings of the expansion device were decided at a given load. As compressor speed increased, he capacity of heat pump increased, the capacity of heat pump increased. Therefore flow area of EEV should be adjusted to have wide openness. Thus the coefficient of performance(COP) of the heat pump decreased due to increasement of compressor power input. The maximum COP point at a given load was decided according to the compressor speed. And under the given specific compressor speed and the load, the optimum openings point of EEV was also decided. Although the total load of indoor units was constant, the operating frequency increased as the fraction of load in a room increased. Finally ad the compressor power input increased, the coefficient of performance decreased.

  • PDF