• 제목/요약/키워드: Multi-terminal direct current (MTDC)

검색결과 5건 처리시간 0.019초

Estimating Stability of MTDC Systems with Different Control Strategy

  • Nguyen, Thai-Thanh;Son, Ho-Ik;Kim, Hak-Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.443-451
    • /
    • 2015
  • The stability of a multi-terminal direct current (MTDC) system is often influenced by its control strategy. To improve the stability of the MTDC system, the control strategy of the MTDC system must be appropriately adopted. This paper deals with estimating stability of a MTDC system based on the line-commutated converter based high voltage direct current (LCC HVDC) system with an inverter with constant extinction angle (CEA) control or a rectifier with constant ignition angle (CIA) control. In order to evaluate effects of two control strategies on stability, a MTDC system is tested on two conditions: initialization and changing DC power transfer. In order to compare the stability effects of the MTDC system according to each control strategy, a mathematical MTDC model is analyzed in frequency domain and time domain. In addition, Bode stability criterion and transient response are carried out to estimate its stability.

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

VSC-MTDC와 BESS 통합 시스템을 통한 발전기 리스케줄링 최적화 기법 (An optimization approach for generation rescheduling with VSC-MTDC and battery energy storage systems)

  • 김호영;김문겸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.147-148
    • /
    • 2015
  • 현재 발전기 스케줄링은 제한된 발전 자원, 에너지 수요 및 연료비용 증가, 그리고 불규칙적인 부하 등 최적리스케줄링에 있어 많은 문제들을 해결하기 위한 새로운 변화가 요구된다. 본 논문에서는 Multi-Terminal Voltage Source Converter High Voltage Direct Current (VSC-MTDC)와 Bettary Energy Storage System (BESS)가 결합된 Hybrid Integrated system (HIS)를 통해 발전기 리스케줄링을 위한 최적화 기법을 제안한다. 최적 발전기 리스케줄링을 위한 HIS 퍼포먼스를 위해 VSC station limit과 충 방전을 기반으로 하는 최적화 과정을 수행한다. 최적조류계산 문제는 VSC-MTDC 시스템과 BESS룰 고려하여 정식화되며, 충 방전 전략은 24시간 수요 정보를 사용하여 발전기 리스케줄링을 위한 하이브리드 통합 시스템의 최적알고리즘을 보여준다. 제안된 최적 리스케줄링 기법을 수정된 IEEE 14 모선에 적용하여 효율성을 입증하고자 한다.

  • PDF

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.