KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1164-1183
/
2019
The rapid development of cloud computing and high requirements of operators requires strong support from the underlying Data Center Networks. Therefore, the effectiveness of using resources in the data center networks becomes a point of concern for operators and material for research. In this paper, we discuss the online virtual-cluster provision problem for multiple tenants with an aim to decide when and where the virtual cluster should be placed in a data center network. Our objective is maximizing the total revenue for the data center networks under the constraints. In order to solve this problem, this paper divides it into two parts: online multi-tenancy scheduling and virtual cluster placement. The first part aims to determine the scheduling orders for the multiple tenants, and the second part aims to determine the locations of virtual machines. We first approach the problem by using the variational inequality model and discuss the existence of the optimal solution. After that, we prove that provisioning virtual clusters for a multi-tenant data center network that maximizes revenue is NP-hard. Due to the complexity of this problem, an efficient heuristic algorithm OMS (Online Multi-tenancy Scheduling) is proposed to solve the online multi-tenancy scheduling problem. We further explore the virtual cluster placement problem based on the OMS and propose a novel algorithm during the virtual machine placement. We evaluate our algorithms through a series of simulations, and the simulations results demonstrate that OMS can significantly increase the efficiency and total revenue for the data centers.
멀티테넌시 아키텍처는 클라우드 기반 서비스와 애플리케이션에서 중요한 역할을 하며, 이러한 환경에서 데이터 격리는 중요한 보안 과제로 부각되고 있다. 본 논문은 스키마 기반 격리, 논리적 격리, 물리적 격리 등 다양한 데이터 격리 방법들을 조사하고, 각각의 장단점을 비교 분석하였다. 데이터 격리 방법들의 실질적인 적용 사례와 효과를 평가하고, 이를 통해 멀티테넌트 웹 사이트 개발 시 고려해야 할 보안 요소들과 데이터 격리 방법의 선택 기준을 제안하였다. 본 논문은 멀티테넌시 환경에서의 데이터 보안을 강화하려는 개발자, 아키텍트 및 시스템 관리자에게 중요한 지침을 제안하고, 효율적이고 안전한 멀티테넌트 웹 사이트의 설계와 구현을 위한 기초적인 프레임워크를 제안한다. 그리고 데이터 격리 방법의 선택이 시스템의 성능, 확장성, 유지관리 용이성 및 전반적인 보안에 어떻게 영향을 미치는지에 대한 통찰력을 제공하며, 이를 통해 멀티테넌트 시스템의 보안과 안정성을 향상시키는 방안을 모색하였다.
요즘 웹 애플리케이션의 보안 취약점을 이용한 해킹과 수 많은 사이트에서 개인정보의 노출로 인한 웹 사이트의 보안 문제가 날로 증가하고 있다. 그리고 이로 인한 피해가 날로 높아지고 있어 그에 대한 대책으로 안전한 웹 사이트 제작방법이 절실히 요구되고 있는 상황이다. 이에 본 논문은 웹 사이트의 제작 시에 오픈소스 웹 애플리케이션 보안 프로젝트를 고려한 OWASP TOP 10 취약점 확인방법을 제안하였고, 제안 방법을 적용하여 보안취약점을 검증하는 방법 및 취약점 개선 후 성능에 대해 분석하였다.
최근 다양한 분야에서 빅데이터 분석의 수요가 증가하고 있다. 효과적인 빅데이터 분석을 위해 분산처리시스템을 이용하지만 시스템 구축에는 상당한 금전적, 시간적 비용이 소모된다. 따라서 시스템 구축비용절감을 위한 방안이 필요하며 빅데이터 분석 플랫폼 서비스를 제공하여 사용자의 시스템 구축비용을 절약할 수 있다. 멀티테넌시는 다수의 사용자가 하나의 서비스를 공유하는 환경을 말하며 싱글테넌트 환경에 비해 시스템 자원 이용률을 향상시킬 수 있다는 장점이 있다. 본 논문에서는 대용량 분산처리 플랫폼 모델 두 가지를 제시하며 멀티테넌시를 지원하기 위한 방안에 대해 설명한다. 첫 번째 모델은 다수의 사용자가 단일 하둡 플랫폼을 공유하는 모델로 하둡의 멀티테넌시 지원을 활용하며, 다른 모델은 가상화 클라우드 컴퓨팅 환경을 활용하여 개별 가상 하둡 클러스터를 제공하는 모델이다. 제시한 두 모델의 프로토타입을 구축하였으며 두 모델의 성능 비교와 하둡 플랫폼의 멀티테넌시 검증을 하였다.
탄력성(elasticity), 빠른 적용과 릴리즈, 광대역 네트워크 접속, 다중 접속(multi-tenancy), 활용에 제한이 없는(ubiquity) 유연성 등 클라우드 컴퓨팅의 고유한 속성들은 클라우드를 선택한 기업과 기관에게 획기적인 효율성을 제공하지만 원천적으로 내재된 보안 위협을 제거해야 하는 대책수립이 필요하다. 이를 위해 본 논문에서는 전략적 연계 모델을 참조하여 클라우드 컴퓨팅 정보보호 프레임워크를 제시하였다. 클라우드 컴퓨팅 정보보호 프레임워크는 클라우드 위협, 보안통제 활동, 클라우드 이해관계자를 중심 축으로 합목적성, 책임성, 투명한 책임소재의 벽면으로 구성된다. 중심 축은 클라우드 환경에서 정보보호 활동을 수행하는 주요 목적인 위협 최소화목표와 이해관계자를 지정하고 그들이 해야 할 정보보호 활동을 정의하고 있다. 또한, 3개 벽면은 클라우드 환경에서 정보보호 활동을 수행하기 위한 원칙이며 중심 축 간의 접점에서 7개 서비스 패키지 도출을 위한 방향을 제공한다.
Nowadays, cloud computing is becoming more popular among companies. However, the characteristics of cloud computing such as a virtualized environment, constantly changing, possible to modify easily and multi-tenancy with a distributed nature, it is difficult to perform attack detection with traditional tools. This work proposes a solution which aims to collect traffic packets data by using Flume and filter them with Spark Streaming so it is possible to only consider suspicious data related to HTTP Slow Rate Denial-of-Service attacks and reduce the data that will be stored in Hadoop Distributed File System for analysis with the FP-Growth algorithm. With the proposed system, we also aim to address the difficulties in attack detection in cloud environment, facilitating the data collection, reducing detection time and enabling an almost real-time attack detection.
Nowadays, cloud computing is being adopted for more organizations. However, since cloud computing has a virtualized, volatile, scalable and multi-tenancy distributed nature, it is challenging task to perform attack detection in the cloud following conventional processes. This work proposes a solution which aims to collect web server logs by using Flume and filter them through Spark Streaming in order to only consider suspicious data or data related to denial-of-service attacks and reduce the data that will be stored in Hadoop Distributed File System for posterior analysis with the frequent pattern (FP)-Growth algorithm. With the proposed system, we can address some of the difficulties in security for cloud environment, facilitating the data collection, reducing detection time and consequently enabling an almost real-time attack detection.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.124-128
/
2024
Cloud computing is a technology for delivering information in which resources are retrieved from the internet through a web-based tools and applications, rather than a direct connection with the server. It is a new emerging computing based technology in which any individual or organization can remotely store or access the information. The structure of cloud computing allows to store and access various information as long as an electronic device has access to the web. Even though various merits are provided by the cloud from the cloud provides to cloud users, it suffers from various flaws in security. Due to these flaws, data integrity and confidentiality has become a challenging task for both the storage and retrieval process. This paper proposes a novel approach for data protection by an improved auditing based methodology in cloud computing especially in the process of cloud storage. The proposed methodology is proved to be more efficient in auditing the threats while storing data in the cloud computing architecture.
클라우드 컴퓨팅 환경에서 기계학습 서비스를 제공하는 Machine-Learning-as-a-Service(MLaaS) 등이 활발히 개발됨에 따라 보다 다양한 분야에서 인공지능 기술을 손쉽고 효과적인 방법으로 활용할 수 있게 되었다. 클라우드 환경에서는 가상화 기술을 통해 각 사용자에게 논리적으로 독립된 컴퓨팅 공간을 제공하는데, 최근 시스템의 취약점을 이용해 클라우드 테넌트(tenant) 사이에 다양한 부채널이 존재할 수 있다는 연구 결과가 발표되고 있다. 본 논문에서는 이러한 멀티-테넌시(multi-tenancy) 환경에서 멜트다운 취약점을 이용하여 딥러닝 모델의 내부 정보를 추출할 수 있는 현실적인 공격 시나리오를 제시한다. 이후 TensorFlow 딥러닝 서비스에 대한 실험을 통해 92.875%의 정확도와 1.325kB/s의 속도로 인공신경망의 모든 정보를 추출할 수 있음을 보인다.
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.23-28
/
2024
The multi-tenancy and high scalability of the cloud have inspired businesses and organizations across various sectors to adopt and deploy cloud computing. Cloud computing provides cost-effective, reliable, and convenient access to pooled resources, including storage, servers, and networking. Cloud service models, SaaS, PaaS, and IaaS, enable organizations, developers, and end users to access resources, develop and deploy applications, and provide access to pooled computing infrastructure. Despite the benefits, cloud service models are vulnerable to multiple security and privacy attacks and threats. The SaaS layer is on top of the PaaS, and the IaaS is the bottom layer of the model. The software is hosted by a platform offered as a service through an infrastructure provided by a cloud computing provider. The Hypertext Transfer Protocol (HTTP) delivers cloud-based apps through a web browser. The stateless nature of HTTP facilitates session hijacking and related attacks. The Open Web Applications Security Project identifies web apps' most critical security risks as SQL injections, cross-site scripting, sensitive data leakage, lack of functional access control, and broken authentication. The systematic literature review reveals that data security, application-level security, and authentication are the primary security threats in the SaaS model. The recommended solutions to enhance security in SaaS include Elliptic-curve cryptography and Identity-based encryption. Integration and security challenges in PaaS and IaaS can be effectively addressed using well-defined APIs, implementing Service Level Agreements (SLAs), and standard syntax for cloud provisioning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.