• Title/Summary/Keyword: Multi-task Architecture

Search Result 63, Processing Time 0.021 seconds

Improvements of an English Pronunciation Dictionary Generator Using DP-based Lexicon Pre-processing and Context-dependent Grapheme-to-phoneme MLP (DP 알고리즘에 의한 발음사전 전처리와 문맥종속 자소별 MLP를 이용한 영어 발음사전 생성기의 개선)

  • 김회린;문광식;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper, we propose an improved MLP-based English pronunciation dictionary generator to apply to the variable vocabulary word recognizer. The variable vocabulary word recognizer can process any words specified in Korean word lexicon dynamically determined according to the current recognition task. To extend the ability of the system to task for English words, it is necessary to build a pronunciation dictionary generator to be able to process words not included in a predefined lexicon, such as proper nouns. In order to build the English pronunciation dictionary generator, we use context-dependent grapheme-to-phoneme multi-layer perceptron(MLP) architecture for each grapheme. To train each MLP, it is necessary to obtain grapheme-to-phoneme training data from general pronunciation dictionary. To automate the process, we use dynamic programming(DP) algorithm with some distance metrics. For training and testing the grapheme-to-phoneme MLPs, we use general English pronunciation dictionary with about 110 thousand words. With 26 MLPs each having 30 to 50 hidden nodes and the exception grapheme lexicon, we obtained the word accuracy of 72.8% for the 110 thousand words superior to rule-based method showing the word accuracy of 24.0%.

  • PDF

AA Study of Spatial Composition and Area Distribution by Function in Public Health Centers of Busan (부산도시보건소의 기능별 공간구성 및 면적배분에 관한 연구)

  • Cho, Heeyoung;Yoon, Sohee;Kim, Suktae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.2
    • /
    • pp.55-65
    • /
    • 2015
  • Purpose: Korea is increasing in the demand for medical services due to rapid economic growth and population aging in modern society. Thus, the importance has been emphasized for the health promotion in the community and the publicity and substantiality of public health centers. However, the environment is insufficient, compared to required functions and developed services as a urban public health center. The purpose of this study is to analysis the plane type and area composition of public health centers in Busan and to identify the property of their spatial configuration Methods: Eight public health centers in Busan, were classified, which had been selected as a medical tourism city. Subsequently, space requirements were analyzed, facilities were typed, vertical, horizontal spaces were reviewed, and area ratios by business function were calculated. Results: A review of the property of spatial configuration and an analysis of the area ratio revealed the three findings. 1)The horizontal analysis found various types: a single type, a multi-type, a radial type, and a circular type, 2)The vertical analysis showed that since a care function (general practice), and a task function (maternal and child health) were concentrated in lower level spaces, the lobby and core were closed located for providing quick medical services. 3)The analysis of the area ratio in public health centers in terms of their function indicated that each public health center' programs had the greatest influence on the area. Implications: This study attempted to present spatial structural problems and improvements for city public health center by identifying their state and classify their functions and types and by calculating the ratio of their area configuration according to the spatial composition. It was thus aimed to presenting implications in establish public functions and roles by activating business through in connection with the number of municipalities in many ways, such as regional health. medical welfare, etc. to improve the health of local residents, and by providing differentiated programs in accordance with local characteristics.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.