• Title/Summary/Keyword: Multi-stage leaching

Search Result 2, Processing Time 0.015 seconds

The Water Leaching Behavior of Vanadium from a Salt-roasted VTM Concentrate and the Preparation of High-concentration Vanadium Solution (VTM 정광 염배소 산물에 대한 바나듐 수침출 거동 분석 및 고농도 바나듐 용액 제조)

  • Park, Yujin;Kim, Rina;Kim, Min-seuk;Jeon, Ho-Seok;Chung, Kyeong Woo
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.56-62
    • /
    • 2022
  • This study investigated the water leaching behavior of vanadium in Na2CO3-roasted vanadium-bearing titaniferous magnetite (VTM) concentrate. The magnetic concentrate and Na2CO3, mixed in a mass ratio of 4:1, were roasted at 1050 ℃, kept for 3 h, and ground to a size of D50 = 48.79 ㎛ using a rod mill. The effects of leaching temperature and pulp density on water leaching were then investigated. The results show that the vanadium leaching efficiency decreased to 90.4%, 88.2%, and 83.8% as the temperature increased to 25, 55, and 85 ℃, respectively, whereas it remained almost constant 90.4%, 87.0%, and 87.0% as the pulp density increased to 10, 50, and 100 w/v%, respectively. Based on the preliminary leaching results, multi-stage leaching was conducted with the experimental conditions of 25 ℃, 100 w/v%, 300 rpm, and 1 h. The vanadium concentration in the final leaching solution was determined as 16.20 g/L after four stages of leaching. Thus, a high-concentration sodium vanadate solution was prepared by multi-stage leaching.

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.