• Title/Summary/Keyword: Multi-sensor data convergence

검색결과 55건 처리시간 0.019초

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Real-time Multi-device Control System Implementation for Natural User Interactive Platform

  • 김명진;황태민;채승훈;김민준;문연국;김승준
    • 인터넷정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.19-29
    • /
    • 2022
  • Natural user interface (NUI) is used for the natural motion interface without using a specific device or tool like a mouse, keyboards, and pens. Recently, as non-contact sensor-based interaction technologies for recognizing human motion, gestures, voice, and gaze have been actively studied, an environment has been prepared that can provide more diverse contents based on various interaction methods compared to existing methods. However, as the number of sensors device is rapidly increasing, the system using a lot of sensors can suffer from a lack of computational resources. To address this problem, we proposed a real-time multi-device control system for natural interactive platform. In the proposed system, we classified two types of devices as the HC devices such as high-end commercial sensor and the LC devices such astraditional monitoring sensor with low-cost. we adopt each device manager to control efficiently. we demonstrate a proposed system works properly with user behavior such as gestures, motions, gazes, and voices.

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

다중센서를 이용한 무인자동차 제어시스템 (Automatic Automobile Control System with Multi-Sensor)

  • 한창우;최원식
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.339-347
    • /
    • 2001
  • Automatic automobile has been studied as the alternative energy system and the production flow automation device recently. But this is dependent on the import production, and its position cannot be controlled free from the fixed path. It is difficult to control the automobile position because of the eccentricity of inertia monent, slip and roughness between wheel and road surface. This problems is solved for the controller to be feedbacked the data of the multi-sensor system consisting of the rotary encoder and electronic compass. The proportional Integrated controller in the modified Ziegler-Nichols method is made up with Hitachi 7034 microprocessor. To the real time control the mechanical, electrical and electronic hardware and software device is produced by myself. The RF data of automobile speed and position is supplied to the remote PC to be displayed the automobile condition. By the experinent of the forward, spin, point path planning, it is known for autombile.

  • PDF

Gate Data Gathering in WiFi-embedded Smart Shoes with Gyro and Acceleration Sensor

  • Jeong, KiMin;Lee, Kyung-chang
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.459-465
    • /
    • 2019
  • There is an increasing interest in health and research on methods for measuring human body information. The importance of continuously observing information such as the step change and the walking speed is increasing. At a person's gait, information about the disease and the currently weakened area can be known. In this paper, gait is measured using wearable walking module built in shoes. We want to make continuous measurement possible by simplifying gait measurement method. This module is designed to receive information of gyro sensor and acceleration sensor. The designed module is capable of WiFi communication and the collected walking information is stored in the server. The information stored in the server is corrected by integrating the acceleration sensor and the gyro sensor value. A band-pass filter was used to reduce the error. This data is categorized by the Gait Finder into walking and waiting states. When walking, each step is divided and stored separately for analysis.

실외 경비 환경에서 강인한 객체 검출 및 추적을 위한 실외 멀티 모달 센서 기반 학습용 데이터베이스 구축 (Multi Modal Sensor Training Dataset for the Robust Object Detection and Tracking in Outdoor Surveillance (MMO (Multi Modal Outdoor) Dataset))

  • 노동기;양원근;엄태영;이재광;김형록;백승민
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.1006-1018
    • /
    • 2020
  • Dataset is getting more import to develop a learning based algorithm. Quality of the algorithm definitely depends on dataset. So we introduce new dataset over 200 thousands images which are fully labeled multi modal sensor data. Proposed dataset was designed and constructed for researchers who want to develop detection, tracking, and action classification in outdoor environment for surveillance scenarios. The dataset includes various images and multi modal sensor data under different weather and lighting condition. Therefor, we hope it will be very helpful to develop more robust algorithm for systems equipped with difference kinds of sensors in outdoor application. Case studies with the proposed dataset are also discussed in this paper.

Multi-point Flexible Touch Sensor Based on Capacitor Structure Using Thin Copper-Plated Polyimide Film for Textile Applications

  • Lee, Junheon;Kim, Taekyeong
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.65-76
    • /
    • 2019
  • A multi-point touch input sensor having different sizes or different capacitance touch points connected by only one pair of signal transmission lines was fabricated using a polyimide film coated with a thin copper plate. The capacitance increases with the decrease in the number of sheets of fabric spacers placed between the two sheets of the polyimide film. Therefore, the touch input sensor could be manufactured without fabric spacers, which was possible by the action of the polyimide film as a dielectric material in the capacitor. On the multi-point touch sensor, higher capacitance was obtained when pressing wider-area touch points with 10mm to 25mm diameter on average. However, the capacitance of a system comprising two sheets of touch sensors was considerably low, causing a serious overlap of the capacitance values according to the data collected from the reliability test. Although the capacitance values could be increased by stacking several sheets of touch sensors, the overlap of data was still observed. After reducing the size of all touch points to 10mm and stacking up to eight sheets of sensors, reliable and consistent capacitance data was obtained. Five different capacitance signals could be induced in the sensors by pushing touch points simultaneously.

분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법 (Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command)

  • 배동석;진태석
    • 한국산업융합학회 논문집
    • /
    • 제21권3호
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

BS와 센서 노드의 위치 기반 라우팅 기법에 관한 연구 (Study of Location-based Routing Techniques of BS and Sensor Node)

  • 김용태;정윤수
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.289-295
    • /
    • 2012
  • 기존 연구에서 에너지 소비의 효율성을 향상하기 위해 제시된 무선 센서 네트워크의 라우팅 기법은 다양하게 존재하지만 라우팅을 위해서는 자신의 위치 정보와 1 홉(hop) 거리에 인접한 주변 노드들의 위치 정보를 유지해야 한다. 그리고 BS 노드로 데이터를 전송하기 위하여 여러 노드를 경유하여 목적지까지 전송하는 다중 홉(Multi-hop) 전송 방식을 사용한다. 이러한 기법은 네트워크의 전체적인 에너지 소모와 센서 노드의 전력 소모를 발생시켜 효율적인 에너지 관리에 문제가 발생한다. 따라서 본 논문에서는 센서 노드의 전파 범위와 RSSI를 이용하여 소스 노드와 거리 $d{\pm}{\alpha}$를 만족하는 BS 노드의 위치 기반 1-홉 라우팅 기법을 제안한다.

Positioning Scheme using Acceleration Factor for Wireless Sensor Networks

  • Park, Na-Yeon;Son, Cheol-Su;Lee, Sung-Jae;Hwang, In-Moon;Kim, Won-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2008
  • Locations of nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times.