• Title/Summary/Keyword: Multi-scale model

Search Result 650, Processing Time 0.029 seconds

Effect of User Experience of Smart Learning App on Intention to Continuous Use (스마트러닝 학습앱의 사용자경험이 지속사용의도에 미치는 영향)

  • Park, Joong-Hee;Han, Kwang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.416-434
    • /
    • 2022
  • This study, for learners using online and offline tools, understood the structural relationship of user experience of smart learning app on continuous use intention through the technology acceptance model, and classified the learning type characteristics. In addition, based on the experience of using the smart learning app, we explored ways to improve the design of the user experience design for learning tools and contents. For this purpose, the usage perception of 84 middle and high school students of the developed smart learning learning app was investigated after using it for 2 months, and the data were analyzed using the PLS structural equation technique. The main results of this study are as follows. First, system and content user experience had a significant effect on perceived usability and perceived ease of use, and the effect on continued use intention through attitude was significant. Second, there was a significant difference in the effect of system user experience on perceived usefulness in multi-group comparative analysis and gender group. In the preferred learning group, it was the path from perceived ease of use and perceived usefulness to attitude and intention to continue using that showed a significant path difference. Third, as a result of classifying the most commonly used learning types by the multidimensional scale method, the types separated into low dimensions were found to be four types: offline sync type, online sync type, ubiquitous learning type, and self-direct learning type.

A study on the factors to affect the career success among workers with disabilities (지체장애근로자의 직업성공 요인에 관한 연구)

  • Lee, Dal-Yob
    • 한국사회복지학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.185-216
    • /
    • 2003
  • This study was aimed at investigating important factors influencing career success among regular workers. The current researcher scrutinized the degree to which variables and factors affect the career success and occupational turnover rates of the research participants. At the same tune, two hypothetical path models established by the researcher were examined using linear multiple regression methods and the LISREL. After examining the differences among the factors of career success, a comparison was made between the disabled worker group and the non-disabled worker group. A questionnaire using the 5-point Likert scale was distributed to a group of 374 workers with disabilities and 463 workers without disabilities. For the data analysis purpose, the structural equation model, factor analysis, correlation analysis, and multiple regression analysis were carried out. The results of this study ran be summarized as follows. First, the results of factor analysis showed important categories of conceptual themes of career success. The initial conceptual factor model did not accord with the empirical one. A three-factorial model revealed categories of personal, family, and organizational factor respectively. The personal factor was composed of the self-esteem and self-efficiency. The family factor was consisted of the multi-roles stress and the number of children. Finally, the organizational factor was composed of the capacity for utilizing resources, networking, and the frequency of mentoring. In addition, the total 10 sub areas of career success were divided by two important aspects; the subjective career success and the objective career success. Second, both research participant groups seemed to be influenced by their occupational types. However, all predictive variables excluding the wage rate and the average length of work years had significant impact on job success for the disabled work group, while all the variables excluding the frequency of advice and length of working years had significant impact on job success for the non-disabled worker group. Third, the turnover rate was significantly influenced by the age and the experience of turnover of the research participants. However, the number of co-workers was the strongest predictive variable for the worker group with disabilities, but the occupation choice variable for the worker group without disabilities. For the disabled worker group, the turnover rate was differently influenced by the type of occupation, the length of working years, while multi-role stress and the average working years at the time of turnover for the worker group without disabilities. Fifth, as a result of verifying the hypothetical path model, it showed that the first model was somewhat proper and could predict the career success on both research participant groups. In the second model, the Chi-square, the degree of freedom (($x^2=64.950$, df=61, P=0.341), and the adjusted Goodness of Fit Index (AGFI) were .964, and the Comparative Fit Index (CFI) were .997, and the Root Mean Squared Residual (RMR) was respectively. .038. The model was best fitted and could predict the career success more highly because the goodness of fit index in the whole models was within the allowed range. In conclusion, the following research implications can be suggested. First, the occupational type of research participants was one of the most important variables to predict the career success for both research participant groups. It means that people with disabilities require human development services including education. They need to improve themselves in this knowledge-based society. Furthermore, for maintaining the career success, people with disabilities should be approached by considering the subjective career success aspects including wages and the promotion opportunities than the objective career success aspects.

  • PDF

Study on the Multilevel Effects of Integrated Crisis Intervention Model for the Prevention of Elderly Suicide: Focusing on Suicidal Ideation and Depression (노인자살예방을 위한 통합적 위기개입모델 다층효과 연구: 자살생각·우울을 중심으로)

  • Kim, Eun Joo;Yook, Sung Pil
    • 한국노년학
    • /
    • v.37 no.1
    • /
    • pp.173-200
    • /
    • 2017
  • This study is designed to verify the actual effect on the prevention of the elderly suicide of the integrated crisis intervention service which has been widely provided across all local communities in Gyeonggi-province focusing on the integrated crisis intervention model developed for the prevention of elderly suicide. The integrated crisis intervention model for the local communities and its manual were developed for the prevention of elderly suicide by integrating the crisis intervention theory which contains local community's integrated system approach and the stress vulnerability theory. For the analysis of the effect, the geriatric depression and suicidal ideation scale was adopted and the data was collected as follows; The data was collected from 258 people in the first preliminary test. Then, it was collected from the secondary test of 184 people after the integrated crisis intervention service was performed for 6 months. The third collection of data was made from 124 people after 2 or 3 years later using the backward tracing method. As for the analysis, the researcher used the R Statistics computing to conduct the test equating, and the vertical scaling between measuring points. Then, the researcher conducted descriptive statistics analysis and univariate analysis of variance, and performed multi-level modeling analysis using Bayesian estimation. As a result of the study, it was found out that the integrated crisis intervention model which has been developed for the elderly suicide prevention has a statistically significant effect on the reduction of elderly suicide in terms of elderly depression and suicide ideation in the follow-up measurement after the implementation of crisis intervention rather than in the first preliminary scores. The integrated crisis intervention model for the prevention of elderly suicide was found to be effective to the extent of 0.56 for the reduction of depression and 0.39 for the reduction of suicidal ideation. However, it was found out in the backward tracing test conducted 2-3 years after the first crisis intervention that the improved values returned to its original state, thus showing that the effect of the intervention is not maintained for long. Multilevel analysis was conducted to find out the factors such as the service type(professional counseling, medication, peer counseling), characteristics of the client (sex, age), the characteristics of the counselor(age, career, major) and the interaction between the characteristics of the counselor and intervention which affect depression and suicidal ideation. It was found that only medication can significantly reduce suicidal ideation and that if the counselor's major is counseling, it significantly further reduces suicidal ideation by interacting with professional counseling. Furthermore, as the characteristics of the suicide prevention experts are found to regulate the intervention effect on elderly suicide prevention in applying integrated crisis intervention model, the primary consideration should be given to the counseling ability of these experts.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Analysis of Determinant Factors of Apartment Price Considering the Spatial Distribution and Housing Attributes (공간지리적 요인과 주거특성을 고려한 공동주택 가격결정 분석)

  • Moon, Tae-Heon;Jeong, Yoon-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.68-79
    • /
    • 2008
  • Because local cities are different from large cities, they need to reflect their own characteristics of housing market. Thus in order to obtain useful implications for the establishing sound housing market in Jinju City, this paper investigated the characteristics of spatial distribution and determinant factors that affect apartment price in Jinju City. GIS representation of the apartments showed that most of old and small apartments were built in 'land readjustment project' areas executed in 1970s. On the contrary, new and large scale apartment complexes were built quite recently and distributed in the western and southern parts of the city. Next, in order to examine the factors which affect apartment price, this paper subtracted firstly several variables from the related studies. However in order to avoid multi-colinearity, variables were summarized by means of factor analysis. Then, setting apartment price as a dependant variable, 12 hedonic price models were established with 33 independent variables. As results, building age, floor area, accessibility to university and hospital, accessibility to arterial road, and stair-type building were turned out to be significant. These results will be used in making the supply and allocation plan of urban facilities and housing. Finally as conclusions this paper emphasized the need of periodic analysis of local housing market and establishing detailed housing information systems.

  • PDF

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Computation of Aeolian Tones from Twin-Cylinders Using Immersed Surface Dipole Sources

  • Cheong, Cheol-Ung;Ryu, Je-Wook;Lee, Soo-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2292-2314
    • /
    • 2006
  • Efficient numerical method is developed for the prediction of aerodynamic noise generation and propagation in low Mach number flows such as aeolian tone noise. The proposed numerical method is based on acoustic/viscous splitting techniques of which acoustic solvers use simplified linearised Euler equations, full linearised Euler equations and nonlinear perturbation equations as acoustic governing equations. All of acoustic equations are forced with immersed surface dipole model which is developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. Multi-scale overset grid technique is also utilized to resolve the complex geometries. Initially, aeolian tone from single cylinder is considered to examine the effects that the immersed surface dipole models combined with the different acoustic governing equations have on the overall accuracy of the method. Then, the current numerical method is applied to the simulation of the aeolian tones from twin cylinders aligned perpendicularly to the mean flow and separated 3 diameters between their centers. In this configuration, symmetric vortices are shed from twin cylinders, which leads to the anti-phase of the lift dipoles and the in-phase of the drag dipoles. Due to these phase differences, the directivity of the fluctuating pressure from the lift dipoles shows the comparable magnitude with that from the drag dipoles at 10 diameters apart from the origin. However, the directivity at 100 diameters shows that the lift-dipole originated noise has larger magnitude than, but still comparable to, that of the drag-dipole one. Comparison of the numerical results with and without mean flow effects on the acoustic wave emphasizes the effects of the sheared background flows around the cylinders on the propagating acoustic waves, which is not generally considered by the classic acoustic analogy methods. Through the comparison of the results using the immersed surface dipole models with those using point sources, it is demonstrated that the current methods can allow for the complex interactions between the acoustic wave and the solid wall and the effects of the mean flow on the acoustic waves.

Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin (전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거)

  • Yun, Young-Ki;Park, Yeon-Jin;Oh, Sang-Hwa;Shin, Won-Sik;Choi, Sang-June;Ryu, Seung-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.