• Title/Summary/Keyword: Multi-satellite

Search Result 1,130, Processing Time 0.027 seconds

Ka band Communication Payload System Technology of COMS (천리안 위성 Ka 대역 통신탑재체시스템 기술)

  • Lee, Seong-Pal;Jo, Jin-Ho;You, Moon-Hee;Choi, Jang-Sup;Ahn, Ki-Burm
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite) is the multi-purposed Korean geostationary satellite funded by four Korean government ministries, and is to supply communication services, ocean and weather observation for 7 years. As part of COMS, development of Ka band communication payload composed of microwave switching transponder and multi-horn antenna is sponsored by KCC (Korea Communications Commission) and developed by ETRI (Electronics and Telecommunications Research Institute). The purpose of Ka Payload development is to acquire space proven technology of Ka payload and to exploit advanced multimedia communication services. This paper aims to study development technology of Ka payload system through whole process of ETRI project. Also application of Ka payload will be dealt in this paper.

Secrecy Performance of Multi-Antenna Satellite-Terrestrial Relay Networks with Jamming in the Presence of Spatial Eavesdroppers

  • Wang, Xiaoqi;Hou, Zheng;Zhang, Hanwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3152-3171
    • /
    • 2022
  • This work investigates the physical layer secrecy of a multi-antenna hybrid satellite-terrestrial relay networks (HSTRN) with jamming, in which a satellite aims to make communication with a destination user by means of a relay, along with spatially random eavesdroppers. In order to weaken the signals of eavesdroppers, the conventional relay can also generate intentional interference, besides forwarding the received signal. Shadowed-Rician fading is adopted in satellite link, while Rayleigh fading is adopted in terrestrial link, eavesdropper link and jamming link. The analytical and asymptotic formulas for the system secrecy outage probability (SOP) are characterized. Practical insights on the diversity order of the network are revealed according to the asymptotic behavior of SOP at high signal-to-noise ratio (SNR) regime. Then, analysis of the system throughput is examined to assess the secrecy performance. In the end, numerical simulation results are presented to validate the theoretical analysis and point out: (1) The secrecy performance of the considered network is affected by the channel fading scenario, the system configuration; (2) Decrease of the relay coverage airspace can provide better SOP performance; (3) Jamming from the relay can improve secrecy performance without additional network resources.

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Fairness-Based Beam Bandwidth Allocation for Multi-Beam Satellite Communication System (다중 빔 위성 통신 시스템을 위한 공평성 기반 빔 대역폭 할당)

  • Jung, Dong-Hyun;Ryu, Joon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1632-1638
    • /
    • 2020
  • In this paper, we investigate a multi-beam satellite communication system where multiple terminals transmit information signals to the gateway via a satellite. The satellite is equipped with phased array antennas to form multiple spot beams of which bandwidths are not identically allocated. We formulate an optimization problem to maximize fairness of beam bandwidth allocation. In order to solve the problem, we propose two heuristic algorithms; iterative beam bandwidth allocation (IBBA) and request ratio-based beam bandwidth allocation (RRBBA) algorithms. The IBBA algorithm iteratively equalizes the ratio of allocated bandwidth of each beam to their resource request while the RRBBA algorithm allocates beam bandwidth calculated from the ratio. Simulation results show that the IBBA algorithm has close fairness performance to the optimum while the RRBBA algorithm has less performance than the IBBA algorithm at the price of reduced computational complexity.

Multi-beam Antenna Analysis

  • Lee, Jeom-Hun;Oh, Seung-Hyeub
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • This paper describes the antenna analysis of the multi-beam for communicationsatellite. The design core parameters of the antenna system are optimal antennadiameter, feed horn type and hom size, F/D, and the coordinate of offset horns. Thepaper deals with the method to determine design core parameters of optimal antennadiameter, feed horn type and horn size. F/D, and the coordinate of offset horns, andthe performances of design result.

Optimal Design of Superframe Pattern for DVB-RCS Return Link

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Seung-Joon;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.251-254
    • /
    • 2002
  • We developed a method for optimal superframe design in the multi-frequency time division multiple access (MF-TDMA) return-link of a satellite multimedia interactive network called a digital video broadcasting return channel over satellite (DVB-RCS) sub-network. To find the optimal superframe pattern with the maximum data throughput, we formulated the design problem as a non-linear combinatorial optimization problem. We also devised the proposed simple method so that it would have field applicability for improving radio resource utilization in the MF-TDMA return link.

  • PDF

SATELLITE MONITORING OF OIL SPILLS CAUSED BY THE HEBEI SPIRIT ACCIDENT

  • Yang, Chan-Su;Yeom, Gi-Ho;Chang, Ji-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.368-368
    • /
    • 2008
  • Oil spills are a principal factor of the ocean pollution. The complicated problems involved in detecting oil spills are usually due to varying wind and sea surface condition such as ocean wave and current. The Hebei Spirit accident was happened in the west sea ($36^{\circ}$41'04" N, $126^{\circ}$03'12" E) near about 8 km distant from Tae-An, Korea on December 7, 2007. The aim of this work is to improve the detection and classification performance in order to define a more accurate training set and identifying the feature of oil spill region. This paper deals with an optimization technique for the detection and classification scheme using multi-frequency and multi-polarization SAR and optical image data sets of the oil spilled sea. The used image data are the ENVISAT ASAR WS and Radarsat-1 of C-band and ALOS PALSAR of L-band SAR data and KOMPSAT-2 optical images together with meteorological or oceanographic data. Both the theory and the experimental results obtained are discussed.

  • PDF

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.

Analysis on the Multi-Constellation SBAS Performance of SDCM in Korea

  • Lim, Cheol-Soon;Park, Byungwoon;So, Hyoungmin;Jang, Jaegyu;Seo, Seungwoo;Park, Junpyo;Bu, Sung-Chun;Lee, Chul-Soo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.181-191
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) provides differential correction and integrity information through geostationary satellite to users in order to reduce Global Navigation Satellite System (GNSS)-related errors such as ionospheric delay and tropospheric delay, and satellite orbit and clock errors and calculate a protection level of the calculated location. A SBAS is a system, which has been set as an international standard by the International Civilian Aviation Organization (ICAO) to be utilized for safe operation of aircrafts. Currently, the Wide Area Augmentation System (WAAS) in the USA, the European Geostationary Navigation Overlay Service (EGNOS) in Europe, MTSAT Satellite Augmentation System (MSAS) in Japan, and GPS-Aided Geo Augmented Navigation (GAGAN) are operated. The System for Differential Correction and Monitoring (SDCM) in Russia is now under construction and testing. All SBASs that are currently under operation including the WAAS in the USA provide correction and integrity information about the Global Positioning System (GPS) whereas the SDCM in Russia that started SBAS-related test services in Russia in recent years provides correction and integrity information about not only the GPS but also the GLONASS. Currently, LUCH-5A(PRN 140), LUCH-5B(PRN 125), and LUCH-5V(PRN 141) are assigned and used as geostationary satellites for the SDCM. Among them, PRN 140 satellite is now broadcasting SBAS test messages for SDCM test services. In particular, since messages broadcast by PRN 140 satellite are received in Korea as well, performance analysis on GPS/GLONASS Multi-Constellation SBAS using the SDCM can be possible. The present paper generated correction and integrity information about GPS and GLONASS using SDCM messages broadcast by the PRN 140 satellite, and performed analysis on GPS/GLONASS Multi-Constellation SBAS performance and APV-I availability by applying GPS and GLONASS observation data received from multiple reference stations, which were operated in the National Geographic Information Institute (NGII) for performance analysis on GPS/GLONASS Multi-Constellation SBAS according to user locations inside South Korea utilizing the above-calculated information.

Low-earth orbiting satellite multi-output converter design and verification by using EDF modeling (EDF 모델링을 이용한 저궤도위성 다중 출력 컨버터 설계 및 검증)

  • Yun, SeokTeak;Yang, JeongHwan
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.76-79
    • /
    • 2012
  • Satellite power system is critical for mission design and survival operation. Accordingly power conversion circuit has to stable design and verify for operation condition change (load, voltage, thermal condition). however, multi-stage make complicate for modeling and get all state solution. In this paper present all state solution for multi-stage converter by using Extended Describing Function(EDF) modelling. EDF modelling has merit to solve complex circuit but it has limit too. Because of fundamental approximation, EDF modeling is not match all topology. Consequently, we verify passible topology for EDF modeling and stable design multi-stage converter.