• 제목/요약/키워드: Multi-rotor System

검색결과 119건 처리시간 0.025초

Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구 (Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System)

  • 조윤모;노태수;정성남;김지언
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.40-50
    • /
    • 2005
  • 본 논문에서는 이중 로터 풍력 발전 시스템에 대한 모델링 및 성능 예측 결과를 제시하였다. 공력 모델은 블레이드 요소 및 모멘텀 이론에 근거하였으며, 시스템 동역학 모델은 다몸체 역학을 적용하였다. 이중 로터 풍력 발전 시스템의 정상 상태는 물론 이중 여자 유도 발전기를 탑재한 발전 시스템에 대하여 풍속 변화에 따른 과도 응답을 분석하였고, 로터 회전수 및 발전 출력 제어를 위하여 주 및 보조 로터의 피치각 제어 전략의 도출 및 비선형 시뮬레이션 결과를 제시하였다.

겹침격자 기법을 이용한 틸트로터의 순항모드에 대한 공력성능 수치해석 (Numerical Analysis of Aerodynamic Performance for Tilt Rotor Aircraft in Cruise Mode Using Chimaera Grid Method)

  • 고성호;안성원;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.87-90
    • /
    • 2004
  • A numerical analysis was made for the unsteady flow fields of rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Navier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by six multi-block Chimera grids. Simulated unsteady flow fields of rotating blades were studied in several different view points.

  • PDF

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

에너지 저장시스템용 복합재 플라이휠 로터의 설계 (Design of a Composite Flywheel Rotor for Energy Storage System)

  • 정희문;최상규;하성규
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

자기베어링 지지 로터계를 위한 견실한 중앙집중식 서보제어기 설계 (Robust Centralized Servocontroller Design for a Rotor System Supported by Magnetic Bearings)

  • 김종원
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1141-1149
    • /
    • 1992
  • 본 연구에서는 Davison이 제안한 견실 제어이론을 응용하여, 자기베어링에 의 해서 지지되는 로터계를 위한 중앙 집중식 서보제어기를 설계하였다. 삼각함수 형태 의 외란과 지령치에 대한 완벽한 영향회피와 추적을 위하여, 일반적 서보보상기(serv- ocompensator)를 MIMO 제어기에 내장하였다. 또한, 상기 제어기의 일부분(subset)으 로서, 중앙집중식 PID 제어기를 제안하였다. 제2장에 자기베어링에 의해 지지되는 강체 로터계의 동적 모델을 요약하였으며, 제3장에서 제어기법의 구축을 설명하고, 두 가지 형태의 제어기에 대한 성능 비교와 견실성의 한계를 보여주는 시뮬레이션 결과를 제 4장에 제시하였다.

저가 하드웨어 기반 멀티로터 비행제어 컴퓨터 설계 및 검증 (Design and Validation of Low-cost Flight Control Computer for Multi-rotor UAVs)

  • 이다솔;심현철
    • 한국항공우주학회지
    • /
    • 제45권5호
    • /
    • pp.401-408
    • /
    • 2017
  • 본 논문에서는 저가 하드웨어 기반의 멀티로터용 비행제어 컴퓨터의 하드웨어 개발과 항법 및 제어 알고리즘의 설계 및 구현, 그리고 실제 비행실험을 통한 검증 과정을 서술하였다. 개발된 비행제어 컴퓨터는 마이크로컨트롤러를 통하여 멀티로터를 안정적으로 제어하며 통합된 Linux 컴퓨터를 활용하여 복잡한 임무에 대응이 가능하도록 설계되었다. 항법 해는 Complementary Filter를 통하여 500 Hz의 속도로 계산을 수행하고, 멀티로터의 운동모델을 기반으로 Observer를 설계, 측정 잡음을 크게 줄였다. 제어 알고리즘은 3차원 Curve Fitting을 통하여 얻은 Feed-forward Term을 사용하여 반응속도를 크게 향상시켰으며, 다수의 비행실험을 통하여 실제 상황에서 효과적으로 동작함을 확인하였다.

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.

Calculation of Electromagnetic Excitation Forces in Double Skewed Motors

  • Bao, Xiaohua;Di, Chong;Zhou, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.812-821
    • /
    • 2018
  • An electromagnetic excitation force is caused by the air-gap flux density, which greatly influences the noise and vibration of the motor. In many real projects, skewed slot technology is widely used to reduce the harmonic components of the air-gap flux density to reduce the noise and vibration of the motor. However, a skewed slot has several side effects such as a transverse current and axial drifting. Thus, a double skewed slot rotor is selected with the aim of eliminating these side effects. This paper presents the exact structure of the double skewed slot rotor and the mechanism whereby the electromagnetic excitation force can be reduced. A multi-slice method is adopted to model the special structure. Finite element simulation is used to verify the theory.

면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계 (Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm)

  • 최병근;양보석
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.