• Title/Summary/Keyword: Multi-period Harmonic Model

Search Result 6, Processing Time 0.023 seconds

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Method of a Multi-mode Low Rate Speech Coder Using a Transient Coding at the Rate of 2.4 kbit/s (전이구간 부호화를 이용한 2.4 kbit/s 다중모드 음성 부호화 방법)

  • Ahn Yeong-uk;Kim Jong-hak;Lee Insung;Kwon Oh-ju;Bae Mun-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.131-142
    • /
    • 2005
  • The low rate speech coders under 4 kbit/s are based on sinusoidal transform coding (STC) or multiband excitation (MBE). Since the harmonic coders are not efficient to reconstruct the transient segments of speech signals such as onsets, offsets, non-periodic signals, etc, the coders do not provide a natural speech quality. This paper proposes method of a efficient transient model :d a multi-mode low rate coder at 2.4 kbit/s that uses harmonic model for the voiced speech, stochastic model for the unvoiced speech and a model using aperiodic pulse location tracking (APPT) for the transient segments, respectively. The APPT utilizes the harmonic model. The proposed method uses different models depending on the characteristics of LPC residual signals. In addition, it can combine synthesized excitation in CELP coding at time domain with that in harmonic coding at frequency domain efficiently. The proposed coder shows a better speech quality than 2.4 kbit/s version of the mixed excitation linear prediction (MELP) coder that is a U.S. Federal Standard for speech coder.

Acoustic Characteristics on the Adolescent Period Aged from 16 to 18 Years (16~18세 청소년기 음성의 음향음성학적 특성)

  • Ko, Hye-Ju;Kang, Min-Jae;Kwon, Hyuk-Jae;Choi, Yaelin;Lee, Mi-Geum;Choi, Hong-Shik
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.81-90
    • /
    • 2013
  • During adolescence the mutational period is characterized by the changes in the laryngeal structure, the length of the vocal cords, and a tone of voice. Usually, adolescents at 15 or 16 reach the voice of adults but the mutational period is sometimes delayed. Therefore, studies on the voice of adolescents between 16 ~ 18 right after the mutational period are required. Accordingly, this paper attempted to provide basic data about the normal standard for patients with voice disorders during this period by evaluating the vocal characteristics of males and females between 16 ~ 18 with an objective device bycomparing and analyzing them by sex and age. The study was conducted on a total of 60 subjects composed of each 10 subjects of each age. The vocal analysis was conducted by MPT (Maximum Phonation Time) measurement, sustained vowels and sentence reading. As for /a/ sustained vowels, fundamental frequency, hereinafter referred to as $F_0$, jitter, shimmer, noise-to-harmonic ratio, hereinafter referred to as NHR were measured by using the Multi-dimensional voice program (MDVP) among the Multi-Speech program of Computerized Speech Lab (Kay Elemetrics). The sentence reading, mean $F_0$, maximum $F_0$ and minimum $F_0$ were measured using the Real-Time Pitch (RTP) Model 5121 among the Multi-Speech program of Computerized Speech Lab (Kay Elemetrics). As a result, according to sex, there were statistically significant differences in $F_0$, jitter, shimmer, mean $F_0$, maximum $F_0$, and minimum $F_0$; and according to age, there were statistically significant differences in MPT. In conclusion, the voice of the adolescents between 16 ~ 18 reached the maturity levels of adults but the voice quality which can be considered on the scale of voice disorders showed transition to the voice of an adult during the mutational period.

Reconstruction of Remote Sensing Data based on dynamic Characteristics of Time Series Data (위성자료의 시계열 특성에 기반한 실시간 자료 재구축)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.329-335
    • /
    • 2018
  • Satellite images, which are widely used in various applications, are very useful for monitoring the surface of the earth. Since satellite data is obtained from a remote sensor, it contains a lot of noise and errors depending on observation weather conditions during data acquisition and sensor malfunction status. Since the accuracy of the data affects the accuracy and reliability of the data analysis results, noise removal and data restoration for high quality data is important. In this study, we propose a reconstruction system that models the time dependent dynamic characteristics of satellite data using a multi-period harmonic model and performs adaptive data restoration considering the spatial correlation of data. The proposed method is a real-time restoration method and thus can be employed as a preprocessing algorithm for real-time reconstruction of satellite data. The proposed method was evaluated with both simulated data and MODIS NDVI data for six years from 2011 to 2016. Experimental results show that the proposed method has the potentiality for reconstructing high quality satellite data.

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

A Study on the Geomagnetic Reference Field Modeling from the Triaxial Magnetometer Data Onboard KOMPSAT-II (아리랑위성 2호의 삼축자력계로부터 관측된 지구자기장 모델 연구)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Kim, Jeong-Woo;Lee, Seon-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The main field component of the Earth's magnetic field was modeled from the tri-axial magnetometer onboard KOrean MultiPurpose SATellite-II (KOMPSAT-II) for the purpose of satellite attitude control. The model computed by the KOMPSAT-II magnetometer measurement data is compared with the International Geomagnetic Reference Field (IGRF) model of a degree of up to 13 in spherical harmonic coefficients. The previous study with KOMPSAT-I (Kim et al. 2004) indicated a good correlation of power spectrum of spherical harmonic coefficients with respect to the degree up to 5. This study, however, showed an agreement of the degree up to 8-9 of the coefficient power spectrum and a discrepancy between degrees 10 and 13. We have concluded that relevant data selection process, removal of the external field from the data in the high latitude region, an accuracy of the magnetometer all play an important role in finding a coherence with the IGRF model. This study will be extended to the secular variation model of geomagnetism if longer-period data become available.