• Title/Summary/Keyword: Multi-pattern Classification

Search Result 131, Processing Time 0.022 seconds

Efficient Implementing of DNA Computing-inspired Pattern Classifier Using GPU (GPU를 이용한 DNA 컴퓨팅 기반 패턴 분류기의 효율적 구현)

  • Choi, Sun-Wook;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1424-1434
    • /
    • 2009
  • DNA computing-inspired pattern classification based on the hypernetwork model is a novel approach to pattern classification problems. The hypernetwork model has been shown to be a powerful tool for multi-class data analysis. However, the ordinary hypernetwork model has limitations, such as operating sequentially only. In this paper, we propose a efficient implementing method of DNA computing-inspired pattern classifier using GPU. We show simulation results of multi-class pattern classification from hand-written digit data, DNA microarray data and 8 category scene data for performance evaluation. and we also compare of operation time of the proposed DNA computing-inspired pattern classifier on each operating environments such as CPU and GPU. Experiment results show competitive diagnosis results over other conventional machine learning algorithms. We could confirm the proposed DNA computing-inspired pattern classifier, designed on GPU using CUDA platform, which is suitable for multi-class data classification. And its operating speed is fast enough to comply point-of-care diagnostic purpose and real-time scene categorization and hand-written digit data classification.

Import Vector Voting Model for Multi-pattern Classification (다중 패턴 분류를 위한 Import Vector Voting 모델)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.655-660
    • /
    • 2003
  • In general, Support Vector Machine has a good performance in binary classification, but it has the limitation on multi-pattern classification. So, we proposed an Import Vector Voting model for two or more labels classification. This model applied kernel bagging strategy to Import Vector Machine by Zhu. The proposed model used a voting strategy which averaged optimal kernel function from many kernel functions. In experiments, not only binary but multi-pattern classification problems, our proposed Import Vector Voting model showed good performance for given machine learning data.

Design Classification and Development of Pattern Searching Algorithm Based on Pattern Design Elements - With focus on Automatic Pattern Design System for Baseball Uniforms Manufactured under Custom-MTM System - (패턴설계요소기반의 디자인 분류 및 패턴탐색 알고리즘개발 - 맞춤양산형 야구복 자동패턴 설계시스템을 위한 -)

  • Kang, In-Ae;Choi, Kueng-Mi;Jun, Jung-Ill
    • Fashion & Textile Research Journal
    • /
    • v.13 no.5
    • /
    • pp.734-742
    • /
    • 2011
  • This study has been undertaken as a basic research for automatic pattern design for baseball uniforms manufactured under custom-MTM system, propose building up of a system whereby various partial patterns are combined under an automatic design system and develop a multi-combination type pattern searching algorithm which allows development of a various designs. As a result of this, type classification based on pattern design elements includes side, open, collar, facing and panel type. Design have been divided into coarse classification ranging from level 1 to 7 according to pattern design elements, based on a design distribution chart. Out of 7 such levels, 3 major types determining design which are, more specifically, level 1 sleeve type, level 2 open type and level 3 collar type, have been taken and combined to determine a total of 12 types to be used for design classification codes. Respective name of style and patterns have been coded using alphabet and numerals. Totally, pattern searching algorithm of multi-combination type has been developed whereby combination of patterns belonging to a specific style can be retrieved automatically once that style name is designated on the automatic pattern design system.

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease (심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법)

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho;Jung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In order to diagnose cardiovascular disease, we proposed EP-based(emerging pattern- based) classification technique using multi-parametric diagnosis indexes. We analyzed linear/nonlinear features of HRV for three recumbent postures and extracted four diagnosis indexes from ST-segments to apply the multi-parametric diagnosis indexes. In this paper, classification model using essential emerging patterns for diagnosing disease was applied. This classification technique discovers disease patterns of patient group and these emerging patterns are frequent in patients with cardiovascular disease but are not frequent in the normal group. To evaluate proposed classification algorithm, 120 patients with AP (angina pectrois), 13 patients with ACS(acute coronary syndrome) and 128 normal people data were used. As a result of classification, when multi-parametric indexes were used, the percent accuracy in classifying three groups was turned out to be about 88.3%.

An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System (HVAC 시스템의 중복고장 검출을 위한 실험적 연구)

  • Cho Sung-Hwan;Hong Young-Ju;Yang Hooncheul;Ahn Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

The Implementation of Pattern Classifier or Karyotype Classification (핵형 분류를 위한 패턴 분류기 구현)

  • Eom, S.H.;Nam, K.G.;Chang, Y.H.;Lee, K.S.;Chang, H.H.;Kim, G.S.;Jun, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.133-136
    • /
    • 1997
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.

  • PDF

EXTRACTING INSIGHTS OF CLASSIFICATION FOR TURING PATTERN WITH FEATURE ENGINEERING

  • OH, SEOYOUNG;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.321-330
    • /
    • 2020
  • Data classification and clustering is one of the most common applications of the machine learning. In this paper, we aim to provide the insight of the classification for Turing pattern image, which has high nonlinearity, with feature engineering using the machine learning without a multi-layered algorithm. For a given image data X whose fixel values are defined in [-1, 1], X - X3 and ∇X would be more meaningful feature than X to represent the interface and bulk region for a complex pattern image data. Therefore, we use X - X3 and ∇X in the neural network and clustering algorithm to classification. The results validate the feasibility of the proposed approach.