• 제목/요약/키워드: Multi-pass Weld

Search Result 69, Processing Time 0.024 seconds

반복 인장 하중을 받는 YP47 극후판 Butt 용접부의 잔류응력 재분포에 관한 연구 (A Study on Evaluation of Residual Stress Redistribution for FCA Butt Weldment of Ultra-Thick YP47 Steel Plate under Tensile Cyclic Load)

  • 강봉국;이동주;신상범
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.28-33
    • /
    • 2016
  • The purpose of this study is to evaluate the redistribution of transverse residual stress in the multi-pass FCA butt weld of YP47 in the hatch coaming top plate of ultra large size containership under the tensile cyclic load. In order to do it, the configuration of modified H type specimen including restraint length was first designed to simulate the restraint condition of the butt weld in hatch coaming top plate. FE analysis procedure for evaluating the transverse residual stress was verified by comparing the calculated mean and surface residual stresses with the measured results in the test specimen. After that, the effect of the cyclic load on the redistribution of transverse residual stress was evaluated by comprehensive FEA. From the results, it was found that although the maximum transverse residual stress decreased with an increase in the applied maximum load, the effect of the cyclic load on the mean residual stress is small enough to be negligible. It is because the maximum stress of the ship corresponding to the probability of 10E-8 is less than 70% of yield stress of the weld.

극후판 다층 FCAW 맞대기 용접부의 잔류응력 특성에 관한 연구 (A Study of the Residual Stress Characteristics of FCAW Multi-Pass Butt Joint for an Ultra-Thick Plate)

  • 방희선;방한서;이윤기;김현수;이광진
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.62-66
    • /
    • 2010
  • The goal of this work is to establish the reliability of FCA welded joints for high strength EH36-TMCP ultra thick plate. For this, heat conduction and thermo elasto-plastic analyses have been conducted on a multi-pass, X-groove, butt-joint model to clarify the thermal and mechanical behavior (residual stresses, magnitude of the stresses, and their production and distribution mechanisms) of the weld joint. In addition, the results of the welding residual stress obtained from thermo elasto-plastic analysis was verified and compared with results obtained by XRD analysis.

GTA 아래보기 자세 다층용접부의 비드형상 예측에 관한 실험적 연구 (An Experimental Study on Prediction of Bead Geometry for GTA Multi-pass Welding in Underhead Position)

  • 박민호;김일수;이지혜;이종표;김영수;나상오
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.53-60
    • /
    • 2014
  • The automatic arc welding is generally accepted as the preferred joining technique and commonly chosen for assembly of large metal structures such as in areas of automotive, aircraft and shipbuilding due to its joint strength, reliability, and low cost compared to other joint processes. Recently, several mathematical models have been developed and studied for control and monitoring welding quality, productivity, microstructure and weld properties in arc welding processes. This study indicates the prediction of process parameters for the expected welding quality with accordance to the adaptive GTA welding process. Furthermore, the mathematical models is also develop to aid the selection of an optimal welding process as the generation of process controls to predict the bead geometry as a function output parameters in the GTA welding process. The developed models through this study showed comparatively excellent predicted results, and will extend to other welding processes to integrate an optimized system for the robotic welding process.

용접금속 잔류수소농도의 수치해석 연구 (A Numerical Study of the Residual Hydrogen Concentration in the Weld Metal)

  • 유진선;하윤석;라제쉬
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.42-46
    • /
    • 2016
  • Hydrogen assisted cracking (HAC) is one of the most complicated problem in welding. Huge amount of studies have been done for decades. Based on them, various standards have been established to avoid HAC. But it is still a chronic problem in industrial field. It is well known that the main causes of the hydrogen crack are residual stress, crack susceptible micro structures and a certain critical level of hydrogen concentration. Even though the exact generating mechanism is unclear till today, it has been reported that the hydrogen level in the weld metal should be managed less than a certain amount to prevent it. Matsuda studied that the residual hydrogen level in the weld metal can be varied even if the initial hydrogen content is same. It is also insisted in this report that the residual hydrogen concentration is in stronger correlation with hydrogen crack than the initial hydrogen content. But, in practical point of view, the residual hydrogen is still hard to consider because measuring hydrogen level is time and cost consuming process. In this regard, numerical analysis is the only solution for considering the residual hydrogen content. Meanwhile, Takahashi showed the possibility of predicting the residual hydrogen by a rigorous FE analysis. But, few commercial software suitable for solving the weld metal hydrogen has been reported yet. In this study, two dimensional thermal - hydrogen coupled analysis was developed by using the commercial FE software MARC. Since the governing equation of the hydrogen diffusion is similar to the heat transfer, it is shown that the heat transfer FE analysis in association with hydrogen diffusion property can be used for hydrogen diffusion analysis. A series of simulation was performed to verify the accuracy of the model. For BOP (Bead-On-Plate) and the multi-pass butt welding simulations, remaining hydrogen contents in the weld metal is well matched with measurements which are referred from Kim and Masamitsu.

강용접부의 표면균열 성장거동에 관한 연구 1

  • 정세희;박재규;이종기
    • Journal of Welding and Joining
    • /
    • 제6권2호
    • /
    • pp.30-39
    • /
    • 1988
  • Generally, as the welded region of weld structures has the incomplete bead and welded deposit which are able to behave like the surface cracks occasinally, there is a high possibility that the fatigue fracture of the weld structures is due to the surface cracks on the wlded region. This study was done to investigate the effects of post weld heat treatment (PWHT) on the fatigue behaviors of the surface crack of the heat affected zone (HAZ) for the multi-pass welds under the repetitive pure bending moment. The obtained results are summarized as follows : 1. The crack grows to the depth direction initially as the number of cylces increase, the amount of crack length is increased for the surface dir3ction and cive versa for the depth direction. 2. The fatigue life is increased in a order of as weld, PWHT specimens and parent. 3. As the number of cycles increase, the crack length is increased to th surface direction. The increase of the depth length is blunted at the center of specimen thickness. 4. The fatigue crack growth of PWHT specimens to the surface direction is dependent upon the holding time and applied stress during PWHT. In order words, the crack growth rate decreases with the holding time and increases with the applied stress during PWHT. 5. As the crack grows, the aspect formed in the course of crack propagation approaches to semicircle for parent and ellipse with the largest semidiameter for PWHT ($1/4hr, 15kgf/mm^2$) 6. At depth direction, it is difficult to apply to the paris' equation because of the scattered data between the crack growth rate and the stress intensity factor range.

  • PDF

해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술 (Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution)

  • 이호진;이봉상;박광수;변진귀;정인철
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질 (Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds)

  • 권혜미;박철호;홍인표;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.

저탄소강 용접열영향부의 NaCl, H2S 수용액에서 생성되는 부식스케일 분석 (Analysis on the Scales formed on the Heat Affected Zone of Low Carbon Steel Weld in NaCl and H2S Water Solutions)

  • 김민정;배동호;이동복
    • 한국표면공학회지
    • /
    • 제43권4호
    • /
    • pp.205-210
    • /
    • 2010
  • The A106 Gr B low carbon steel, which was used in the electric power plants and heavy chemical plants, was welded by multi-pass arc welding. The heat affected zone (HAZ) formed by welding was corroded in acid chloride solution, or in saturated $H_2S$ containing acid chloride solution, or in saturated $H_2S$ containing acid chloride solution under applied current. In this order of corrosion solution, the rate of corrosion increased, because $H_2S$ accelerated the iron dissolution, hydrogen evolution, and the formation of nonprotective FeS, whereas the applied current accelerated the electrochemical reaction. The scales formed in acid chloride solution consisted primarily of $Fe_3O_4$, while those formed in $H_2S$ containing acid chloride solution consisted primarily of $Fe_3O_4$ and FeS.

A Study on the Development of Underwater Wet Welding Electrodes

  • Kim, Min-Nam
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.52-58
    • /
    • 2003
  • Underwater wet arc welds were experimentally performed on the KR-RA steel plate as base metal by using four different types of flux coated electrodes: KT33, UWEE, UWCS, and TN20, UWEE, the individually designed flux coated underwater electrode, had good operability when compared with other domestic terrestrial electrodes, and imported goods. The hardness value and the portion of martensite of HAZ were increased, by using a rapid cooling rate, Mechanical properties were also examined experimentally with a multi-pass butt-welding specimen test. The individually designed flux coated electrode UWEE could be used in practice for underwater wet welds.

A Study on the Development of Underwater Wet Welding Electrodes

  • Kim, Min-Nam
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.75-81
    • /
    • 2003
  • Underwater wet arc welds were experimentally performed on the KR-RA steel plate as base metal by using four different types of flux coated electrodes: KT33, UWEE, UWCS, and TN20. UWEE, the individually designed flux coated underwater electrode, had good operability when compared with other domestic terrestrial electrodes, and imported goods. The hardness value and the portion of martensite of HAZ were increased, by using a rapid cooling rate, Mechanical properties were also examined experimentally with a multi-pass butt-welding specimen test. The individually designed flux coated electrode UWEE could be used in practice for underwater wet welds.

  • PDF