• Title/Summary/Keyword: Multi-objective optimization problem

Search Result 306, Processing Time 0.024 seconds

Intercropping in Rubber Plantation Ontology for a Decision Support System

  • Phoksawat, Kornkanok;Mahmuddin, Massudi;Ta'a, Azman
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Planting intercropping in rubber plantations is another alternative for generating more income for farmers. However, farmers still lack the knowledge of choosing plants. In addition, information for decision making comes from many sources and is knowledge accumulated by the expert. Therefore, this research aims to create a decision support system for growing rubber trees for individual farmers. It aims to get the highest income and the lowest cost by using semantic web technology so that farmers can access knowledge at all times and reduce the risk of growing crops, and also support the decision supporting system (DSS) to be more intelligent. The integrated intercropping ontology and rule are a part of the decision-making process for selecting plants that is suitable for individual rubber plots. A list of suitable plants is important for decision variables in the allocation of planting areas for each type of plant for multiple purposes. This article presents designing and developing the intercropping ontology for DSS which defines a class based on the principle of intercropping in rubber plantations. It is grouped according to the characteristics and condition of the area of the farmer as a concept of the rubber plantation. It consists of the age of rubber tree, spacing between rows of rubber trees, and water sources for use in agriculture and soil group, including slope, drainage, depth of soil, etc. The use of ontology for recommended plants suitable for individual farmers makes a contribution to the knowledge management field. Besides being useful in DSS by offering options with accuracy, it also reduces the complexity of the problem by reducing decision variables and condition variables in the multi-objective optimization model of DSS.

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

Development of Bridge Maintenance Method based on Life-Cycle Performance and Cost (생애주기 성능 및 비용에 기초한 교량 유지관리기법 개발)

  • Park, Kyung Hoon;Kong, Jung Sik;Hwang, Yoon Koog;Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1023-1032
    • /
    • 2006
  • In this paper, a new method for the bridge maintenance is proposed to overcome the limit of the existing methods and to implement the preventive bridge maintenance system. The proposed method can establish the lifetime optimum maintenance strategy of the deteriorating bridges considering the life-cycle performance as well as the life-cycle cost. The lifetime performance of the deteriorating bridges is evaluated by the safety index based on the structural reliability and the condition index detailing the condition state. The life-cycle cost is estimated by considering not only the direct maintenance cost but also the user and failure cost. The genetic algorithm is applied to generate a set of maintenance scenarios which is the multi-objective combinatorial optimization problem related to the life-cycle cost and performance. The study examined the proposed method by establishing a maintenance strategy for the existing bridge and its advantages. The result shows that the proposed method can be effectively applied to deciding the bridge maintenance strategy.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF

DNA Sequence Design using $\varepsilon$ -Multiobjective Evolutionary Algorithm ($\varepsilon$-다중목적함수 진화 알고리즘을 이용한 DNA 서열 디자인)

  • Shin Soo-Yong;Lee In-Hee;Zhang Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1217-1228
    • /
    • 2005
  • Recently, since DNA computing has been widely studied for various applications, DNA sequence design which is the most basic and important step for DNA computing has been highlighted. In previous works, DNA sequence design has been formulated as a multi-objective optimization task, and solved by elitist non-dominated sorting genetic algorithm (NSGA-II). However, NSGA-II needed lots of computational time. Therefore, we use an $\varepsilon$- multiobjective evolutionarv algorithm ($\varepsilon$-MOEA) to overcome the drawbacks of NSGA-II in this paper. To compare the performance of two algorithms in detail, we apply both algorithms to the DTLZ2 benchmark function. $\varepsilon$-MOEA outperformed NSGA-II in both convergence and diversity, $70\%$ and $73\%$ respectively. Especially, $\varepsilon$-MOEA finds optimal solutions using small computational time. Based on these results, we redesign the DNA sequences generated by the previous DNA sequence design tools and the DNA sequences for the 7-travelling salesman problem (TSP). The experimental results show that $\varepsilon$-MOEA outperforms the most cases. Especially, for 7-TSP, $\varepsilon$-MOEA achieves the comparative results two tines faster while finding $22\%$ improved diversity and $92\%$ improved convergence in final solutions using the same time.