• Title/Summary/Keyword: Multi-mode Sensor

Search Result 97, Processing Time 0.039 seconds

Electrode Shape Design for Multi-Mode Sensors Using Genetic Algorithm (유전 알고리즘을 이용한 다중모드 감지기를 위한 전극의 형상 설계)

  • Park, Chul-Hue;Lee, Ki-Moon;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.637-642
    • /
    • 2004
  • This paper presents a new shape design method for the multi-mode sensor that can detect selected multiple modes for the active vibration control of mechanical structures. The structure used for this study is an isotropic cantilever beam type with a PVDF(polyvinylidene fluoride) which is bonded onto the structure as a sensor. Characteristic behaviors of the sensor are related with the electrode shapes of PVDF. The shape optimization problem is solved by defining a new multi-objective function and using the genetic algorithm. Resulting electrode shape functions have good performances to detect the multiple vibration modes. The results of analytical simulations are compared with those of experiment works. The results agree well each other. Hence, the obtained experimental results give evidence for the validity of the presented theoretical analysis of the electrode shape design problem.

  • PDF

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks (멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘)

  • Jeon, Jun Heon;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

Development of submersion sensors using multi-mode fibers spliced with a fiber Bragg grating (다중모드 광섬유 융착형 침수 감지 센서 개발)

  • Sohn, Kyung-Rak;Key, Kwang-Hyun;Shim, Joon-Hwan;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.925-931
    • /
    • 2009
  • This paper reports a preliminary experimental investigation and characterization of an optical fiber-based submersion sensor system for applications in water flooding and leakage. The sensor system comprises a multi-mode fiber spliced with fiber Bragg grating and an intensity-based interrogator. Submersion tests were conducted in water-air and Glycerin-air environments. By the refractive index of the fiber-probe surrounding materials, the reflectance and the detecting power level is determined. When the probe is dipped into the water, the optical output power dramatically decreases from -7.5dBm to -17.5dBm. But, the center of Bragg wavelength is not affected in spite of external material changes. Temporal response characteristics of the sensor system is investigated to verify the real-time reaction. When the probe is immersed into the liquid, there is no transition time.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection

  • Eom, Won-Jin;Kim, Sung-Woo;Park, Kyeonghwan;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.793-799
    • /
    • 2016
  • A multi-purpose sensor interface that provides dual-mode operation of fingerprint sensing and physiological signal detection is presented. The dual-mode sensing capability is achieved by utilizing inter-pixel shielding patterns as capacitive amplifier's input electrodes. A prototype readout circuit including a fingerprint panel for feasibility verification was fabricated in a $0.18{\mu}m$ CMOS process. A single-channel readout circuit was implemented and multiplexed to scan two-dimensional fingerprint pixels, where adaptive calibration capability against pixel-capacitance variations was also implemented. Feasibility of the proposed multi-purpose interface was experimentally verified keeping low-power consumption less than 1.9 mW under a 3.3 V supply.

Driving Environment Recognition and a Simple Wall-Following Algorithm for AGV Using Sonar Sensor (초음파 센서를 이용한 AGV의 주행 환경 인식과 간단한 벽면 따르기 알고리즘)

  • Kim, Seong-Joong;Lee, Jeong-Woong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2337-2340
    • /
    • 2002
  • This paper presents the method of AGV(Automatic guided vehicle)'s moving environment(plane, corner, edge) recognition using SONAR sensor configuration. As for the SONAR sensor, the Crosstalk effect has been generally considered as an inevitable noisy phenomenon in the indoor environment. However, this effect can be used as a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. EERUF(error eliminate rapid ultrasonic firing) is a method for firing multiple ultrasonic sensors in mobile robot application and multi-echo mode of POLARIOD Device can reduce the Crosstalk effect. Here, Crosstalk effect was reduced using EERUF and applied to the AGV with a simple wall-following algorithm in the indoor environment. This method was tesed by a typical AGV with multi SONAR sensors in the laboratory environment.

  • PDF

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Active Peg-in-hole of Chamferless Parts Using Multi-sensors (다중센서를 사용한 챔퍼가 없는 부품의 능동적인 삽입작업)

  • Jeon, Hun-Jong;Kim, Kab-Il;Kim, Dae-Won;Son, Yu-Seck
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.410-413
    • /
    • 1993
  • Chamferless peg-in-hole process of the cylindrical type parts using force/torque sensor and vision sensor is analyzed and simulated in this paper. Peg-in-hole process is classified to the normal mode (only position error) and tilted mode(position and orientation error). The tilted mode is sub-classified to the small and the big tilted mode according to the relative orientation error. Since the big tilted node happened very rare, most papers dealt with only the normal or the small tilted mode. But the most errors of the peg-in-hole process happened in the big tilted mode. This problem is analyzed and simulated in this paper using the force/torque sensor and vision senor. In the normal mode, fuzzy logic is introduced to combine the data of the force/torque sensor and vision sensor. Also the whole processing algorithms and simulations are presented.

  • PDF