• Title/Summary/Keyword: Multi-media learning

Search Result 133, Processing Time 0.026 seconds

Effects of Nursing Skills Educational Programs Using Multimedia

  • Choi, Keum-Bong
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • Nursing students who play a role as future nursing professions are provided with education through various teaching and learning methods in order to develop necessary competencies. The purpose of this study is to confirm the effect of nursing practice education using multimedia. A quasi experimental study with a nonequivalent control group pretest-posttest design was used, and the participants of the study were students from two nursing colleges, who received an educational intervention using multimedia as the experimental group and those without education were selected as the control group. Data collection was conducted immediately before and after educational intervention, and data analysis was performed using the SPSS 21.0 program by x2-test, Fisher's exact probability, and t-test. As a result of the study, the experimental group was statistically significant in self-efficacy (t=3.402, p=0.015), resilience (t=2.047, p=0.045) and performance confidence (t=2.128, p=0.018) compared to the control group. Through these results, we could confirm that multi-media practical education is effective educational method for enhancing nursing students' self-efficacy, resilience, and performance confidence. Therefore, in order to establish a systematization of the nursing profession, it is essential and should be continued for nursing students to use structured multimedia and core fundamental nursing skills.

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • Vu, Dac Tung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF

Public Identity, Paratext, and the Aesthetics of Intransparency: Charlotte Smith's Beachy Head

  • Jon, Bumsoo
    • Journal of English Language & Literature
    • /
    • v.58 no.6
    • /
    • pp.1167-1191
    • /
    • 2012
  • For Romantic women writers the paratext itself is essentially a masculine literary space affiliated with established writing practices; however, this paper suggests that Charlotte Turner Smith's mode of discourse in her use of notes and their relation to the text proper are never fixed in her contemplative blank-verse long poem, Beachy Head (1807). Even though the display of learning in the paratext partly supports the woman writer's claim to authority, this paper argues that Smith's endnotes also indicate her way of challenging the double bind for women writers, summoning masculine authority on the margins of her book while simultaneously interrogating essentialist thinking and instructions about one's identity in a culture and on the printed page. The poem shows how the fringes of the book can be effectively transformed from a masculine site of authority to an increasingly feminized site of interchange as Smith writes with an awareness of patriarchal, imperial abuses of power in that area of the book. There is a persistent transgression of cultural/textual boundaries occurring in Beachy Head, which explores the very scene and languages of imperial encounter. Accordingly, if Wordsworth's theory of composition suggests a subjective and abstract poetic experience-an experience without mediation-in which its medium's purpose seems to be to disappear from the reader's consciousness, an examination of the alternative discourse of self-exposure in Smith's poem reveals the essentially fluid nature of media-consciousness in the Romantic era, which remains little acknowledged in received accounts of Romantic literary culture.

Fall and Direction Detection Using Multiple Cameras and Sensors (다중 카메라와 센서를 활용한 낙상 및 방향 감지)

  • Insu Jeon;Dayeong So;Chomyong Kim;Jung-Yeon Kim;Yunyoung Nam;Jihoon Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.191-192
    • /
    • 2024
  • 고령 인구의 지속적인 증가로 인해 고령자의 안전과 관련된 문제는 주요한 관심사 중 하나로 부상하고 있다. 특히, 고령자들 사이에서 자주 발생하는 낙상 사고는 심각한 건강 문제를 일으킬 수 있으며, 이를 예방하고 대응하는 것은 고령 인구의 삶의 질을 향상하는 데 중요한 역할을 한다. 본 연구는 8대의 카메라로 촬영된 영상과 센서 데이터를 통합한 낙상 감지 기법을 제안한다. 제안한 기법은 MediaPipe를 활용하여 Skeleton Keypoint를 추출하는 이미지 인식 기법과 센서 데이터에서 얻은 특징을 활용하는 센서 기반 기술을 결합하여 낙상 사고의 발생 및 방향을 효과적으로 감지할 수 있다. 이러한 결과를 바탕으로 본 연구는 향후 고령자들의 생활 안전성과 의료 시스템의 효율성을 높이는 데 이바지할 수 있을 것으로 기대한다.

  • PDF

Autoencoder Based Fire Detection Model Using Multi-Sensor Data (다중 센서 데이터를 활용한 오토인코더 기반 화재감지 모델)

  • Taeseong Kim;Hyo-Rin Choi;Young-Seon Jeong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.23-32
    • /
    • 2024
  • Large-scale fires and their consequential damages are becoming increasingly common, but confidence in fire detection systems is waning. Recently, widely-used chemical fire detectors frequently generate lots of false alarms, while video-based deep learning fire detection is hampered by its time-consuming and expensive nature. To tackle these issues, this study proposes a fire detection model utilizing an autoencoder approach. The objective is to minimize false alarms while achieving swift and precise fire detection. The proposed model, employing an autoencoder methodology, can exclusively learn from normal data without the need for fire-related data, thus enhancing its adaptability to diverse environments. By amalgamating data from five distinct sensors, it facilitates rapid and accurate fire detection. Through experiments with various hyperparameter combinations, the proposed model demonstrated that out of 14 scenarios, only one encountered false alarm issues. Experimental results underscore its potential to curtail fire-related losses and bolster the reliability of fire detection systems.

Design and Implementation of Electronic Text Books in order to Utilize Regional Text Books for Social Studies (사회과 지역교과서 활용을 위한 전자교과서의 설계 및 구현)

  • Kang, Oh-Han;Park, Hui-Seong
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • In this paper, we have developed electronic textbooks for social studies centering on contents of a public educational process so that primary schools can use them as a text book. Also, we conducted a survey to find out how teachers perceived electronic textbooks in respect to site accessibility and utility, instructional design, progress of lesson, validity and accuracy of learning content, interface design, and web-based multimedia. In this paper, we presented a new model for electronic textbooks development, which is expected to be useful in developing electronic textbooks as a main text book, unlike other existing models. We applied the navigation utilizing book metaphors to the user interface, on the basis of the results from the analysis of the existing electronic textbooks. In addition, we provided affluent multi-media materials as well as hyperlink, a strong point of on-lines. Experimental results show that the academic achievement was high in knowledge-understanding areas and functional areas in the perspective of academic achievements of the learners.

  • PDF

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

A Research on Expandability of Cultural Assets Restoration Blend using Virtual Reality (가상현실을 통한 문화재복원 융합 확장성 연구)

  • Oh, Seung-Hwan
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.465-472
    • /
    • 2015
  • The virtual reality technology is currently used classifying functional types such as the observation operation type, the experimental activity type, the learning information type, the field problem-solving type, and other different types, based on the media's characteristics implementing 3D form of multi-sensory information. Using Virtual Reality, the restoration of the 'Doksu Palace' has been grafted onto J. Keller's ARCS model, suggesting a field restoration concept that reenacts the lives of the people that had been in the field with the cultural heritage and history based on a scenario based scene direction. This paper also summarizes 3 different types of implementation of the field restoration assorting multi-scene direction. Certain limitations exist, due to the fact that a completed prototype hasn't been suggested and that a detailed notion of the housing and 3D audio connection has been omitted.

Generation of High-Resolution Chest X-rays using Multi-scale Conditional Generative Adversarial Network with Attention (주목 메커니즘 기반의 멀티 스케일 조건부 적대적 생성 신경망을 활용한 고해상도 흉부 X선 영상 생성 기법)

  • Ann, Kyeongjin;Jang, Yeonggul;Ha, Seongmin;Jeon, Byunghwan;Hong, Youngtaek;Shim, Hackjoon;Chang, Hyuk-Jae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the medical field, numerical imbalance of data due to differences in disease prevalence is a common problem. It reduces the performance of a artificial intelligence network, leading to difficulties in learning a network with good performance. Recently, generative adversarial network (GAN) technology has been introduced as a way to address this problem, and its ability has been demonstrated by successful applications in various fields. However, it is still difficult to achieve good results in solving problems with performance degraded by numerical imbalances because the image resolution of the previous studies is not yet good enough and the structure in the image is modeled locally. In this paper, we propose a multi-scale conditional generative adversarial network based on attention mechanism, which can produce high resolution images to solve the numerical imbalance problem of chest X-ray image data. The network was able to produce images for various diseases by controlling condition variables with only one network. It's efficient and effective in that the network don't need to be learned independently for all disease classes and solves the problem of long distance dependency in image generation with self-attention mechanism.

A Methodology for Automatic Multi-Categorization of Single-Categorized Documents (단일 카테고리 문서의 다중 카테고리 자동확장 방법론)

  • Hong, Jin-Sung;Kim, Namgyu;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.77-92
    • /
    • 2014
  • Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we propose a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. First, we attempt to find the relationship between documents and topics by using the result of topic analysis for single-categorized documents. Second, we construct a correspondence table between topics and categories by investigating the relationship between them. Finally, we calculate the matching scores for each document to multiple categories. The results imply that a document can be classified into a certain category if and only if the matching score is higher than the predefined threshold. For example, we can classify a certain document into three categories that have larger matching scores than the predefined threshold. The main contribution of our study is that our methodology can improve the applicability of traditional multi-category classifiers by generating multi-categorized documents from single-categorized documents. Additionally, we propose a module for verifying the accuracy of the proposed methodology. For performance evaluation, we performed intensive experiments with news articles. News articles are clearly categorized based on the theme, whereas the use of vulgar language and slang is smaller than other usual text document. We collected news articles from July 2012 to June 2013. The articles exhibit large variations in terms of the number of types of categories. This is because readers have different levels of interest in each category. Additionally, the result is also attributed to the differences in the frequency of the events in each category. In order to minimize the distortion of the result from the number of articles in different categories, we extracted 3,000 articles equally from each of the eight categories. Therefore, the total number of articles used in our experiments was 24,000. The eight categories were "IT Science," "Economy," "Society," "Life and Culture," "World," "Sports," "Entertainment," and "Politics." By using the news articles that we collected, we calculated the document/category correspondence scores by utilizing topic/category and document/topics correspondence scores. The document/category correspondence score can be said to indicate the degree of correspondence of each document to a certain category. As a result, we could present two additional categories for each of the 23,089 documents. Precision, recall, and F-score were revealed to be 0.605, 0.629, and 0.617 respectively when only the top 1 predicted category was evaluated, whereas they were revealed to be 0.838, 0.290, and 0.431 when the top 1 - 3 predicted categories were considered. It was very interesting to find a large variation between the scores of the eight categories on precision, recall, and F-score.