• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.029 seconds

Step-Down Characteristics of Multi-layed Piezo Transformer for Transverse Vibration Mode (경방향 진동모드를 이용한 적층형 압전변압기의 강압특성)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This paper presents characteristics of piezo transformer for AC-DC converter. This transformer uses transverse vibration mode and the origin of the structure was the ring dot type transformer. Because, the ring dot type transformers produce only step-up phenomenon, we made a multi-layered ring dot structure for a step-down output. The characteristics of the transformer were simulated by using the ANSYS. And frequency and voltage were measured by changing the load resistance and current. Frequencies that have the maximum output voltage and current were gradually increased, when the resistance were increased. Output voltage and current show a stable linearity according to the input voltage. The maximum output power was expected greater than 20 [W]. So, we expect that this type of multi-layered step-down ring dot transformer can be adopted for a small AC adapters.

  • PDF

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

Modeling and Analysis of a Multi Bossed Beam Membrane Sensor for Environmental Applications

  • Arjunan, Nallathambi;Thangavelu, Shanmuganantham
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a unique pressure sensor design for environmental applications. The design uses a new geometry for a multi bossed beam-membrane structure with a SOI (silicon-on-insulator) substrate and a mechanical transducer. The Intellisuite MEMS CAD design tool was used to build and analyze the structure with FEM (finite element modeling). The working principle of the multi bossed beam structure is explained. FEM calculations show that a sensing diaphragm with Mises stress can provide superior linear response compared to a stress-free diaphragm. These simulation results are validated by comparing the estimated deflection response. The results show that, the sensitivity is enhanced by using both the novel geometry and the SOI substrate.

A Study on Architectural Acoustic Characteristics of an Open Air Performance Hall with the Membrane Structure (테프론(TEFRON)막 구조 야외공연장의 건축음향특성 분석에 관한 연구)

  • Kim, Jung-Joong;Sohn, Jang-Yeul;Park, Hye-Na
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.649-653
    • /
    • 2005
  • Recently, many membrane structure buildings are constructed with the trend of multi functional and high technological construction. The membrane structure has the characteristics such as distinguished architectural shape which can make variable space creation and can make economic use of material. Therefore, it is in the spotlight of sport complex, various concert hall, and public service buildings. However, the acoustic study of membrane structure has not been following up the increasing demand for the membrane structure. In this study, the acoustic characteristics of membrane structure will be studied and analyzed using architectural acoustic factors based on acoustic design theory And also, the differences between theoretical exhortation value and outcome of study will be studied with the basis of architectural acoustic material study.

  • PDF

A Study on the Characteristics of Circular Piezoelectric Transformner which has Multi-layered Crescent-Shaped Input Electrode (적층형 Crescent-Shaped Input Type 원형 압전변압기의 특성)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-224
    • /
    • 2006
  • This paper present a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. This transformer has multi-layered structure. The piezoelectric transformers operated m each transformer's resonance vibration mode. The electrodes and poling directions on commercialy available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor ($k_p,\;k_{15}$) becomes effective rather than the transverse mode coupling factor ($k_{31}$). The Resonance frequency is 65.22[kHz] and maximum voltage step-up ratio is 149. Multi-layered transformer has better efficiency and step-up ratio than the single-layered transformer.

  • PDF

Sintering Multi-scale Virtual Reality

  • Olevsky, Eugene A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.264-265
    • /
    • 2006
  • The directions of further developments in the modeling of sintering are pointed out, including multi-scale modeling of sintering, on-line sintering damage criteria, particle agglomeration, sintering with phase transformations. A true multi-scale approach is applied for the development of a new meso-macro methodology for modeling of sintering. The developed macroscopic level computational framework envelopes the mesoscopic simulators. No closed forms of constitutive relationships are assumed for the parameters of the material. The model framework is able to predict the final dimensions of the sintered specimen on a global scale and identify the granular structure in any localized area for prediction of the material properties.

  • PDF

Characterization of Superconducting Multi-layer Thin Films (초전도 다층박막의 특성 해석)

  • 이현수;한태희;임성훈;고석철;두호익;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.243-246
    • /
    • 2000
  • The sputtering systems mainly consist of the three-target holder. The target and substrate were the on-axis type. The MgO and STO substrate were used for the deposition of each layer. The optimum conditions of single-layer thin film were investigated from the SEM images and the XRD patterns. Based on the above conditions, the multi-layer thin films such as YBaCuO/LaGaO/Au/Nb and YBaCuO/Au/Nb were fabricated. The crystalline, the electrical Properties, the energy gap structure and the characteristics of the tunneling barrier on the multi-layer thin film have been investigated and characterized.

  • PDF

Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model (재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Lee, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF