• 제목/요약/키워드: Multi-level models

검색결과 302건 처리시간 0.037초

옥트리 인코딩을 이용한 법선 벡터의 압축 (Compression of Normal Vectors using Octree Encoding)

  • 김용주;김재정
    • 한국CDE학회논문집
    • /
    • 제12권2호
    • /
    • pp.109-117
    • /
    • 2007
  • Three-dimensional mesh models have been widely used in various applications such as simulations, animations, and e-catalogs. In such applications the normal vectors of mesh models are used mainly for shading and take up the major portion of data size and transmission time paper over networks. Therefore a variety of techniques have been developed to compress them efficiently. In this paper, we propose the MOEC (Modified Octree Encoding Compression) algorithm, which allow multi lever compression ratios for 3D mesh models. In the algorithm, a modified octree has nodes representing their own positions and supporting a depth of the tree so that the normal vectors are compressed up to levels where the shading is visually indistinguishable. This approach provides efficient in compressing normals with multi-level ratios, without additional encoding when changing in compression ratio is required.

Multi-factors Bidding method for Job Dispatching in Hybrid Shop Floor Control System

  • Lee, Seok--Hee;Park, Kyung-Hyun;Bae, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.124-131
    • /
    • 2000
  • A shop floor can be considered as and importand level to develop a Computer Integrated Manufacturing system (CIMs). The shop foor is a dynamic environment where unexpected events contrinuously occur, and impose changes to planned activities. The shop floor should adopt an appropriate control system that is responsible for scheduling coordination and moving the manufacturing material and information flow. In this paper, the architecture of the hybrid control model identifies three levels; i.e., the shop floor controller (SFC), the cell controller(CC) and the equipment controller (EC). The methodology for developing these controller is employ an object-oriented approach for static models and IDEF0 for function models for dispatching a job. SFC and CC are coordinated by employing a multi-factors bidding and an adapted Analytic Hierarchy Process(AHP) prove applicability of the suggested method. Test experiment has been conducted by with the shopfloor, consisting of six manufacturing cells.

  • PDF

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Moving Mesh Technique을 이용한 2차원 염해 침투 예측 모델의 개발 (Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique)

  • 최원;김한중
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.1-7
    • /
    • 2015
  • Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects $DuraCrete^{TM}$ model rather than $Life365^{TM}$ model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

청각 주변 자극의 효과를 고려한 효율적 차량-운전자 상호 연동 모델 구현 방법론 (Implementation of the Perception Process in Human‐Vehicle Interactive Models(HVIMs) Considering the Effects of Auditory Peripheral Cues)

  • 나종관;박민용
    • 대한인간공학회지
    • /
    • 제25권3호
    • /
    • pp.67-75
    • /
    • 2006
  • HVIMs consists of simulated driver models implemented with series of mathematical functions and computerized vehicle dynamic models. To effectively model the perception process, as a part of driver models, psychophysical nonlinearity should be considered not only for the single-modal stimulus but for the stimulus of multiple modalities and interactions among them. A series of human factors experiments were conducted using the primary sensory of visual and auditory modalities to find out the effects of auditory cues in visual velocity estimation tasks. The variations of auditory cues were found to enhance/reduce the perceived intensity of velocity as the level changed. These results indicate that the conventional psychophysical power functions could not applied for the perception process of the HVIMs with multi-modal stimuli. 'Ruled surfaces' in a 3-D coordinate system(with the intensities of both kinds of stimuli and the ratio of enhancement, respectively for each coordinate) were suggested to model the realistic perception process of multi-modal HVIMs.

뇌졸중 환자의 결과지표에 영향을 주는 요인: 다변량 회귀분석과 다수준분석 비교 (Factors Affecting the Outcome Indicators in Patients with Stroke)

  • 김선희;이해종
    • 보건행정학회지
    • /
    • 제25권1호
    • /
    • pp.31-39
    • /
    • 2015
  • Background: The purpose of this study is comparison of the results between regression and multi-level analysis to find out factors influencing outcome indicators (in-hospital death, length of stay, and medical charges) of stroke patients. Methods: By using patient sample data of Health Insurance Review & Assessment Service, patients admitted with stroke were selected as survey target and 15,864 patients and 762 hospitals were surveyed. Results: For the results of existing regression analysis and multi-level analysis, models were assessed through model suitability index value and as a result, the value of results of multi-level analysis decreased compared to the results of regression, showing it is a better model. Conclusion: Factors influencing in-hospital death of stroke patients were analyzed and as a result, intra-class correlation (ICC) was 13.6%. In factors influencing length of stay, ICC was 11.4%, and medical charges, ICC was 17.7%. It was found that factors influencing the outcome indicators of stroke patients may vary in every hospital. This study could carry out more accurate analysis than existing research findings through analysis of reflecting structure at patient level and hospital level factors and analysis on random effect.

RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험 (An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests)

  • 김남식;이지호;장승필
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.35-43
    • /
    • 2004
  • 대형 구조물의 지진응답을 실험적으로 연구할 경우, 실험장비의 용량과 실험모형의 크기 제약으로 인하여 축소모형이 일반적으로 적용되고 있다. 그러나 구조물의 지진응답은 비탄성 거동을 나타내기 때문에 거동예측이 복잡함에도 불구하고, 축소모형의 지진실험 결과로부터 원형구조물의 지진응답을 유추하기 위한 상사법칙의 연구는 미비한 실정이다. 철근콘크리트 구조물의 축소모형 제작 시 상사율이 커지면 상대적으로 부가질량이 증가하며, 또한 굵은 골재 크기의 영향으로 원형구조물과 축소모형의 제작에 동일한 재료를 사용하지 않는 것이 바람직하다. 따라서 동일한 재료를 사용하지 않을 경우, 상사법칙은 기하학적인 상사율과 재료적인 등가탄성계수비에 의존하게 된다. 본 연구에서는 원형구조물과 축소모형에 각각 적용되는 normal-concrete와 micro-concrete의 재료 비선형성을 파악하기 위해 압축강도시험을 수행하여, 재료의 거동구간을 극한 변형률을 기준으로 등가의 다단계로 나누어 등가탄성계수비를 적용시킴으로써 지진손상의 정도를 고려할 수 있는 equivalent multi-phase similitude law를 유도하였다. 유도된 상사법칙을 고려한 유사동적실험 알고리즘을 구성하였으며, 실험적인 검증을 위하여 철근콘크리트 column에 대하여 원형구조물과 1/5축소모형을 재료시험에서 정의한 등가탄성계수비를 고려하여 설계, 제작하였다. 검증실험에서는 constant modulus ratio와 variable modulus ratio를 적용하여 준정적실험과 유사동적실험을 수행한 결과, equivalent multi-phase similitude law를 고려한 유사동적실험 알고리즘에 의한 축소모형의 응답결과가 원형구조물의 거동을 비교적 정확히 재현함을 확인하였다.

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • 압두스 사마드;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF

휴리스틱 매핑에의한 절삭조건의 결정

  • 김성근;박면웅;손영태;박병태;맹희영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.262-266
    • /
    • 1993
  • The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.