• Title/Summary/Keyword: Multi-level classification

Search Result 162, Processing Time 0.026 seconds

머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가 (Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents)

  • 이정우;권오진
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.389-396
    • /
    • 2024
  • 생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족과 이에 따른 인공지능 모델을 적용한 사례가 전무한 실정이다. 본 연구는 Web of Science에서 한국 기관 소속 저자들의 주소 데이터를 활용해 지역명을 분류하기 위한 데이터셋을 구축하고, 머신러닝 및 딥러닝 모델의 적용을 실험 및 평가했다. 실험 결과 BERT 모델이 가장 우수한 성능을 보였으며, 광역 분류에서는 정밀도 98.41%, 재현율 98.2%, F1 점수 98.31%를 기록하였다. 시군구 분류에서는 정밀도 91.79%, 재현율 88.32%, F1 점수 89.54%를 달성하였다. 이 결과는 향후 지역 R&D 현황, 지역 간 연구자 이동성, 지역 공동 연구 등 다양한 연구의 기반 데이터로 활용이 가능하다.

다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지 (Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images)

  • 윤형진;정종철
    • 대한원격탐사학회지
    • /
    • 제35권6_2호
    • /
    • pp.1107-1115
    • /
    • 2019
  • 산불 피해와 관련하여 위성영상을 활용한 분석은 넓은 면적을 빠르게 분석하는 장점이 있다. 본 연구에서는 2019년 4월 4일 속초에서 발생한 산불 피해에 따른 산림의 변화 탐지를 위해 7장의 Sentinel-2A영상을 활용하였다. 산불피해지역 분류 과정은 NBR(normalized burn ratio) 값의 전후 시기 차이를 나타낸 dNBR(difference normalized burn ratio)을 통해 산불피해 정도를 7가지 단계로 분류하였다. 분류과정에서 본 연구는 식생의 재성장지수가 높은 3지역을 선정하여 해당 지역에 대한 세밀한 공간 분석을 실시하였다. dNBR 분석 결과는 활엽수림보다 침엽수림의 식생 재성장 분류가 큰 폭으로 나타났으나, NDVI를 통한 결과에서 가장 낮은 평균값을 보여주었다. 이는 침엽수림의 dNBR 오차범위로 나타난다. 시계열 결과로는 4월 20일과 5월 3일 사이를 기준으로 산불피해 면적이 큰 폭으로 감소하였다. 이는 경과한 시기의 활엽수림에서 하층 식생의 발달 및 식생 증가에 따른 피해 완화로 예를 들 수 있다. 본 연구 결과는 발생하는 산불 피해에 대하여 산림 분류 별 면적 변화를 통해 변화 탐지를 실시하였으며, NDVI와 dNBR 비교를 통해 침엽수림이 가장 높은 분류 오차가 발생한다는 결론을 도출하였다. 따라서 dNBR을 통한 영상분류과정에서 현장조사를 동반한 정밀한 국내 산불피해 등급표를 개선해야 할 필요성을 제시하였다.

A Muti-Resolution Approach to Restaurant Named Entity Recognition in Korean Web

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권4호
    • /
    • pp.277-284
    • /
    • 2012
  • Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법 (Multi-focus Image Fusion Technique Based on Parzen-windows Estimates)

  • ;박대철
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.75-88
    • /
    • 2008
  • 본 논문은 입력 이미지 블록의 클래스 조건부 확률 밀도 함수의 커널 추정에 기반한 공간 영역에서의 다중초점 이미지 융합 기법을 제안한다. 이미지 융합 문제를 시험 패턴으로부터 추정된 유사 밀도 함수에 의해 사후 클래스 확률, P($w_{i}{\mid}B_{ikl}$),을 계산하는 분류 임무로 접근하였다. C개의 입력 이미지 $I_{i}$에 대하여 제안한 방법은 i 클래스 $w_{i}$를 정의하고 베이즈 결정 원리에 기초하여 판별 함수를 최대화하는 PxQ 블록 $B_{ikl}$의 집합에 의해 표현되는 결정 지도로 부터 융합 이미지 Z(k,l)를 형성한다. 출력 화질의 척도로서 RMSE 와 상호 정보량인 MI를 사용하여 제안한 기법의 성능이 평가되었다. 커널 함수의 폭 ${\sigma}$ 도 변화시키고, 다른 종류의 커널과 블록 크기를 변화시켜 가며 성능평가를 수행하였다. 제안한 가법은 C=2 와 C=3에 대하여 시험하였고 시험 결과는 좋은 성능을 보였다.

  • PDF

플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험 (The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse)

  • 최만권;류희룡;조명환;유인호;김승유
    • 생물환경조절학회지
    • /
    • 제29권4호
    • /
    • pp.473-479
    • /
    • 2020
  • 본 연구는 단조가력 하중을 받는 실물크기 비닐온실의 기둥-서까래-도리 접합부의 역학적거동을 알아보기 위해 현장에서 시공되고 있는 두 가지 형식의 실험체로 구조실험을 수행하였다. 실험결과를 바탕으로 두 가지 형식의 접합부에 대해서 휨성능을 분석하고 접합부 분류를 시도하였다. Type B는 Type A에 비해 휨 성능이 77% 수준으로 나타났으며 두 형식 모두 강성 및 휨내력이 강접합 수준에 미치지 못하는 것으로 나타났다. 기둥-서까래-도리 접합부의 거동은 용접부 및 체결구 변형에 의한 국부좌굴이 지배적이었다. AISC 기준에 의한 접합부 분류 결과, Type A와 B 접합부 모두 설계 시 가정하는 강접합 성능에 미치지 못하는 결과를 보였으며 단순 접합으로 분류되는 것으로 나타났다. 따라서 접합부 성능평가 및 분류 결과, 접합부 성능을 고려한 온실 설계가 이루어져야 하며 신뢰성 높은 온실 구조설계를 위해서 온실 접합부에 대한 명확한 설계기준 정립 연구가 필요할 것으로 판단된다.

인천지역 일부 외식업체의 메뉴북 디자인 실태조사 (A Study on the Current Status of Menu Book Design in the Restaurant of Incheon Area)

  • 권순자;이준현
    • 한국식생활문화학회지
    • /
    • 제25권2호
    • /
    • pp.179-188
    • /
    • 2010
  • In order to aide in the design of an improved menu book, which could play an important role as a marketing tool, the current version of the menu books and managers (subjects) of 295 restaurants in the Incheon area were examined. These were managers of Korean (36.3%), Western (25.8%), Japanese (14.6%), cafeteria (12.5%) and Chinese (10.8%) style restaurants. The level of service (self-evaluation, 3-point scale) was average $2.25{\pm}0.45$. The general colorings of the menu books were green (19.0%), brown (18.6%), black (17.6%), yellow (15.9%), red (13.6%) and blue (13.2%). The material of the menu book cover was mainly leather (35.9%), and the internal material was mainly coated paper (59.7%). Physically, the design was two-panel fold (38.3%), two-panel multi-page (35.6%), die style (10.2%), single panel (8.1%) and tent style (7.8%). The type sizes were unchanged in 49.9% of the menu books and in 61.7% photos were not used. 53.9% of menu books did not explain the menus, and 13.2% did not classify the items into groups. Emphasis of profit-making menus was not done in 66.8%. 51.5% of menu books were irreplaceable in parts. The emphasis of profit-making menus was less among the Korean style restaurants (p<0.001). The possibility of partial replacement of menu books was lower in both Korean and Chinese restaurants (p<0.001). The explanation of the items was lower in the Japanese restaurants (p<0.001). The classification of items into groups was lower in cafeteria (p<0.001). In cases in which there were both seasonal and event menus, the possibility of partial replacements of menu books was higher (p<0.001). Restaurants of which service level was less than ordinary were lower in the differentiation of type sizes (p<0.001), the use of photos (p<0.001), the explanation of menus (p<0.001), the classification of menus by groups (p<0.05), the emphasis of profit-making menus (p<0.001) and the possibility of partial replacement of menu books (p<0.001). If these study findings are applied to the designing of menu books, the role of the menu book as an important tool for marketing could be greatly improved.

변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구 (A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas)

  • 염종민;김현옥;윤보열
    • 한국지리정보학회지
    • /
    • 제15권3호
    • /
    • pp.66-80
    • /
    • 2012
  • 원격탐사 방법을 활용한 변화지역 탐지, 재난재해 지도 작성, 작황 모니터링 등 다중시기의 위성영상을 활용한 결과를 도출하기 위해서는 시계열 영상 정보를 서로 비교할 수 있는 공통의 스케일로 정규화 하는 것이 필요하다. 다중시기 영상에 대한 정규화 방법은 절대복사보정과 상대복사 보정으로 나눌 수 있으며, 본 연구에서는 상대복사 보정을 통한 시계열 위성영상처리 기법을 다루고자 한다. 2011년 3월 해일 피해가 발생했던 일본 센다이 지역을 연구대상지로 선정하였고, KOMPSAT-2 다중분광영상을 이용한 사고 전, 후의 피해지역 탐지에 있어 상대복사 보정의 실효성을 분석하였다. 다양한 상대복사 보정 기법 중에서 정준상관분석을 통해 PIFs(Pseudo Invariant Features) 지역을 자동으로 추출하는 MAD(Multivariate Alteration Detection) 기법을 적용하였다. 본 사례연구 분석결과 MAD 방식에 의한 자동 PIFs 지역의 추출은 비교적 높은 정확도 수준에서 이루어짐을 확인할 수 있었으며, 상대복사 보정된 시계열 위성영상을 사용함으로써 변화지역 자동탐지의 신뢰수준을 높일 수 있는 것으로 나타났다.

다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석 (Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets)

  • 이대건;신영하;이동천
    • 한국측량학회지
    • /
    • 제40권2호
    • /
    • pp.91-108
    • /
    • 2022
  • 대부분의 경우 광학 RGB 영상을 딥러닝(DL: Deep learning)의 학습 데이터로 사용하여 객체탐지, 인식, 식별, 분류, 의미적 분할 및 객체 분할 등을 수행하지만, 실세계의 3차원 객체들을 2차원 영상으로 완전하게 파악하는 것은 한계가 있다. 그러므로 대표적인 3차원 지형 공간정보인 수치표면모델(DSM: Digital Surface Model)과 더불어 DSM에 내재된 특성정보를 이용하여 3차원 지형지물을 분석하는 것이 효과적이다. 건물과 같이 기하학적으로 정형화된 형태의 인공구조물은 3차원 공간데이터로부터 얻을 수 있는 기하학적 요소와 특성을 이용하여 객체의 분류와 형상 묘사가 가능하다. 이 연구는 고차원 시각정보(high-level visual information) 시스템에서 중요한 역할을 하는 내재된 고유의 특성정보(intrinsic information)를 기반으로 하며, 이를 위하여 객체의 기하학적 요소인 경사와 주향을 DSM으로부터 도출하고, 다방향에서 생성한 음영기복영상(SRI: Shaded Relief Image)과 함께 DL 모델의 학습 수행에 사용하였다. 실험은 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 데이터 셋 중에서 DSM과 레이블 데이터를 객체의 의미적 분류를 위해 개발된 합성곱 기반의 SegNet 학습에 사용하였다. 지형지물을 분류하고 분류 결과를 이용하여 건물을 추출하였다. 특히 DL 모델의 학습 성능 향상을 위해 학습 데이터의 여러 조합에 따른 시너지 효과를 분석하는 것에 핵심이다. 제안한 방법은 건물 분류와 추출에 효과적임을 보여주고 있다.