생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족과 이에 따른 인공지능 모델을 적용한 사례가 전무한 실정이다. 본 연구는 Web of Science에서 한국 기관 소속 저자들의 주소 데이터를 활용해 지역명을 분류하기 위한 데이터셋을 구축하고, 머신러닝 및 딥러닝 모델의 적용을 실험 및 평가했다. 실험 결과 BERT 모델이 가장 우수한 성능을 보였으며, 광역 분류에서는 정밀도 98.41%, 재현율 98.2%, F1 점수 98.31%를 기록하였다. 시군구 분류에서는 정밀도 91.79%, 재현율 88.32%, F1 점수 89.54%를 달성하였다. 이 결과는 향후 지역 R&D 현황, 지역 간 연구자 이동성, 지역 공동 연구 등 다양한 연구의 기반 데이터로 활용이 가능하다.
산불 피해와 관련하여 위성영상을 활용한 분석은 넓은 면적을 빠르게 분석하는 장점이 있다. 본 연구에서는 2019년 4월 4일 속초에서 발생한 산불 피해에 따른 산림의 변화 탐지를 위해 7장의 Sentinel-2A영상을 활용하였다. 산불피해지역 분류 과정은 NBR(normalized burn ratio) 값의 전후 시기 차이를 나타낸 dNBR(difference normalized burn ratio)을 통해 산불피해 정도를 7가지 단계로 분류하였다. 분류과정에서 본 연구는 식생의 재성장지수가 높은 3지역을 선정하여 해당 지역에 대한 세밀한 공간 분석을 실시하였다. dNBR 분석 결과는 활엽수림보다 침엽수림의 식생 재성장 분류가 큰 폭으로 나타났으나, NDVI를 통한 결과에서 가장 낮은 평균값을 보여주었다. 이는 침엽수림의 dNBR 오차범위로 나타난다. 시계열 결과로는 4월 20일과 5월 3일 사이를 기준으로 산불피해 면적이 큰 폭으로 감소하였다. 이는 경과한 시기의 활엽수림에서 하층 식생의 발달 및 식생 증가에 따른 피해 완화로 예를 들 수 있다. 본 연구 결과는 발생하는 산불 피해에 대하여 산림 분류 별 면적 변화를 통해 변화 탐지를 실시하였으며, NDVI와 dNBR 비교를 통해 침엽수림이 가장 높은 분류 오차가 발생한다는 결론을 도출하였다. 따라서 dNBR을 통한 영상분류과정에서 현장조사를 동반한 정밀한 국내 산불피해 등급표를 개선해야 할 필요성을 제시하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제12권4호
/
pp.277-284
/
2012
Named entity recognition (NER) technique can play a crucial role in extracting information from the web. While NER systems with relatively high performances have been developed based on careful manipulation of terms with a statistical model, term mismatches often degrade the performance of such systems because the strings of all the candidate entities are not known a priori. Despite the importance of lexical-level term mismatches for NER systems, however, most NER approaches developed to date utilize only the term string itself and simple term-level features, and do not exploit the semantic features of terms which can handle the variations of terms effectively. As a solution to this problem, here we propose to match the semantic concepts of term units in restaurant named entities (NEs), where these units are automatically generated from multiple resolutions of a semantic tree. As a test experiment, we applied our restaurant NER scheme to 49,153 nouns in Korean restaurant web pages. Our scheme achieved an average accuracy of 87.89% when applied to test data, which was considerably better than the 78.70% accuracy obtained using the baseline system.
Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.2948-2963
/
2015
In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.230-240
/
2022
Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.
본 논문은 입력 이미지 블록의 클래스 조건부 확률 밀도 함수의 커널 추정에 기반한 공간 영역에서의 다중초점 이미지 융합 기법을 제안한다. 이미지 융합 문제를 시험 패턴으로부터 추정된 유사 밀도 함수에 의해 사후 클래스 확률, P($w_{i}{\mid}B_{ikl}$),을 계산하는 분류 임무로 접근하였다. C개의 입력 이미지 $I_{i}$에 대하여 제안한 방법은 i 클래스 $w_{i}$를 정의하고 베이즈 결정 원리에 기초하여 판별 함수를 최대화하는 PxQ 블록 $B_{ikl}$의 집합에 의해 표현되는 결정 지도로 부터 융합 이미지 Z(k,l)를 형성한다. 출력 화질의 척도로서 RMSE 와 상호 정보량인 MI를 사용하여 제안한 기법의 성능이 평가되었다. 커널 함수의 폭 ${\sigma}$ 도 변화시키고, 다른 종류의 커널과 블록 크기를 변화시켜 가며 성능평가를 수행하였다. 제안한 가법은 C=2 와 C=3에 대하여 시험하였고 시험 결과는 좋은 성능을 보였다.
본 연구는 단조가력 하중을 받는 실물크기 비닐온실의 기둥-서까래-도리 접합부의 역학적거동을 알아보기 위해 현장에서 시공되고 있는 두 가지 형식의 실험체로 구조실험을 수행하였다. 실험결과를 바탕으로 두 가지 형식의 접합부에 대해서 휨성능을 분석하고 접합부 분류를 시도하였다. Type B는 Type A에 비해 휨 성능이 77% 수준으로 나타났으며 두 형식 모두 강성 및 휨내력이 강접합 수준에 미치지 못하는 것으로 나타났다. 기둥-서까래-도리 접합부의 거동은 용접부 및 체결구 변형에 의한 국부좌굴이 지배적이었다. AISC 기준에 의한 접합부 분류 결과, Type A와 B 접합부 모두 설계 시 가정하는 강접합 성능에 미치지 못하는 결과를 보였으며 단순 접합으로 분류되는 것으로 나타났다. 따라서 접합부 성능평가 및 분류 결과, 접합부 성능을 고려한 온실 설계가 이루어져야 하며 신뢰성 높은 온실 구조설계를 위해서 온실 접합부에 대한 명확한 설계기준 정립 연구가 필요할 것으로 판단된다.
In order to aide in the design of an improved menu book, which could play an important role as a marketing tool, the current version of the menu books and managers (subjects) of 295 restaurants in the Incheon area were examined. These were managers of Korean (36.3%), Western (25.8%), Japanese (14.6%), cafeteria (12.5%) and Chinese (10.8%) style restaurants. The level of service (self-evaluation, 3-point scale) was average $2.25{\pm}0.45$. The general colorings of the menu books were green (19.0%), brown (18.6%), black (17.6%), yellow (15.9%), red (13.6%) and blue (13.2%). The material of the menu book cover was mainly leather (35.9%), and the internal material was mainly coated paper (59.7%). Physically, the design was two-panel fold (38.3%), two-panel multi-page (35.6%), die style (10.2%), single panel (8.1%) and tent style (7.8%). The type sizes were unchanged in 49.9% of the menu books and in 61.7% photos were not used. 53.9% of menu books did not explain the menus, and 13.2% did not classify the items into groups. Emphasis of profit-making menus was not done in 66.8%. 51.5% of menu books were irreplaceable in parts. The emphasis of profit-making menus was less among the Korean style restaurants (p<0.001). The possibility of partial replacement of menu books was lower in both Korean and Chinese restaurants (p<0.001). The explanation of the items was lower in the Japanese restaurants (p<0.001). The classification of items into groups was lower in cafeteria (p<0.001). In cases in which there were both seasonal and event menus, the possibility of partial replacements of menu books was higher (p<0.001). Restaurants of which service level was less than ordinary were lower in the differentiation of type sizes (p<0.001), the use of photos (p<0.001), the explanation of menus (p<0.001), the classification of menus by groups (p<0.05), the emphasis of profit-making menus (p<0.001) and the possibility of partial replacement of menu books (p<0.001). If these study findings are applied to the designing of menu books, the role of the menu book as an important tool for marketing could be greatly improved.
원격탐사 방법을 활용한 변화지역 탐지, 재난재해 지도 작성, 작황 모니터링 등 다중시기의 위성영상을 활용한 결과를 도출하기 위해서는 시계열 영상 정보를 서로 비교할 수 있는 공통의 스케일로 정규화 하는 것이 필요하다. 다중시기 영상에 대한 정규화 방법은 절대복사보정과 상대복사 보정으로 나눌 수 있으며, 본 연구에서는 상대복사 보정을 통한 시계열 위성영상처리 기법을 다루고자 한다. 2011년 3월 해일 피해가 발생했던 일본 센다이 지역을 연구대상지로 선정하였고, KOMPSAT-2 다중분광영상을 이용한 사고 전, 후의 피해지역 탐지에 있어 상대복사 보정의 실효성을 분석하였다. 다양한 상대복사 보정 기법 중에서 정준상관분석을 통해 PIFs(Pseudo Invariant Features) 지역을 자동으로 추출하는 MAD(Multivariate Alteration Detection) 기법을 적용하였다. 본 사례연구 분석결과 MAD 방식에 의한 자동 PIFs 지역의 추출은 비교적 높은 정확도 수준에서 이루어짐을 확인할 수 있었으며, 상대복사 보정된 시계열 위성영상을 사용함으로써 변화지역 자동탐지의 신뢰수준을 높일 수 있는 것으로 나타났다.
대부분의 경우 광학 RGB 영상을 딥러닝(DL: Deep learning)의 학습 데이터로 사용하여 객체탐지, 인식, 식별, 분류, 의미적 분할 및 객체 분할 등을 수행하지만, 실세계의 3차원 객체들을 2차원 영상으로 완전하게 파악하는 것은 한계가 있다. 그러므로 대표적인 3차원 지형 공간정보인 수치표면모델(DSM: Digital Surface Model)과 더불어 DSM에 내재된 특성정보를 이용하여 3차원 지형지물을 분석하는 것이 효과적이다. 건물과 같이 기하학적으로 정형화된 형태의 인공구조물은 3차원 공간데이터로부터 얻을 수 있는 기하학적 요소와 특성을 이용하여 객체의 분류와 형상 묘사가 가능하다. 이 연구는 고차원 시각정보(high-level visual information) 시스템에서 중요한 역할을 하는 내재된 고유의 특성정보(intrinsic information)를 기반으로 하며, 이를 위하여 객체의 기하학적 요소인 경사와 주향을 DSM으로부터 도출하고, 다방향에서 생성한 음영기복영상(SRI: Shaded Relief Image)과 함께 DL 모델의 학습 수행에 사용하였다. 실험은 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 데이터 셋 중에서 DSM과 레이블 데이터를 객체의 의미적 분류를 위해 개발된 합성곱 기반의 SegNet 학습에 사용하였다. 지형지물을 분류하고 분류 결과를 이용하여 건물을 추출하였다. 특히 DL 모델의 학습 성능 향상을 위해 학습 데이터의 여러 조합에 따른 시너지 효과를 분석하는 것에 핵심이다. 제안한 방법은 건물 분류와 추출에 효과적임을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.