• Title/Summary/Keyword: Multi-learning System

Search Result 620, Processing Time 0.033 seconds

A Study of Cooperative Algorithm in Multi Robots by Reinforcement Learning

  • Hong, Seong-Woo;Park, Gyu-Jong;Bae, Jong-I1;Ahn, Doo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.1-149
    • /
    • 2001
  • In multi robot environment, the action selection strategy is important for the cooperation and coordination of multi agents. However the overlap of actions selected individually by each robot makes the acquisition of cooperation behaviors less efficient. In addition to that, a complex and dynamic environment makes cooperation even more difficult. So in this paper, we propose a control algorithm which enables each robot to determine the action for the effective cooperation in multi-robot system. Here, we propose cooperative algorithm with reinforcement learning to determine the action selection In this paper, when the environment changes, each robot selects an appropriate behavior strategy intelligently. We employ ...

  • PDF

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

The Effect of Worker Heterogeneity in Learning and Forgetting on System Productivity (학습과 망각에 대한 작업자들의 이질성 정도가 시스템 생산성에 미치는 영향)

  • Kim, Sungsu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.145-156
    • /
    • 2015
  • Incorporation of individual learning and forgetting behaviors within worker-task assignment models produces a mixed integer nonlinear program (MINLP) problem, which is difficult to solve as a NP hard due to its nonlinearity in the objective function. Previous studies commonly assume homogeneity among workers in workforce scheduling that takes account of learning and forgetting characteristics. This paper expands previous researches by considering heterogeneous individual learning/forgetting, and investigates the impact of worker heterogeneity in initial expertise, steady-state productivity, learning and forgetting on system performance to assist manager's decision-making in worker-task assignments without tackling complex MINLP models. In order to understand the performance implications of workforce heterogeneity, this paper examines analytically how heterogeneity in each of the four parameters of the exponential learning and forgetting (L/F) model affects system performance in three cases : consecutive assignments with no break, n breaks of s-length each, and total b break-periods occurred over T periods. The study presents the direction of change in worker performance under different assignment schedules as the variance in initial expertise, steady-state productivity, learning or forgetting increases. Thus, it implies whether having more heterogenous workforce in terms of each of four parameters in the L/F model is desired or not in different schedules from the perspective of system productivity measurement.

MULTI-APERTURE IMAGE PROCESSING USING DEEP LEARNING

  • GEONHO HWANG;CHANG HOON SONG;TAE KYUNG LEE;HOJUN NA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.56-74
    • /
    • 2023
  • In order to obtain practical and high-quality satellite images containing high-frequency components, a large aperture optical system is required, which has a limitation in that it greatly increases the payload weight. As an attempt to overcome the problem, many multi-aperture optical systems have been proposed, but in many cases, these optical systems do not include high-frequency components in all directions, and making such an high-quality image is an ill-posed problem. In this paper, we use deep learning to overcome the limitation. A deep learning model receives low-quality images as input, estimates the Point Spread Function, PSF, and combines them to output a single high-quality image. We model images obtained from three rectangular apertures arranged in a regular polygon shape. We also propose the Modulation Transfer Function Loss, MTF Loss, which can capture the high-frequency components of the images. We present qualitative and quantitative results obtained through experiments.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

Dynamic power and bandwidth allocation for DVB-based LEO satellite systems

  • Satya Chan;Gyuseong Jo;Sooyoung Kim;Daesub Oh;Bon-Jun Ku
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.955-965
    • /
    • 2022
  • A low Earth orbit (LEO) satellite constellation could be used to provide network coverage for the entire globe. This study considers multi-beam frequency reuse in LEO satellite systems. In such a system, the channel is time-varying due to the fast movement of the satellite. This study proposes an efficient power and bandwidth allocation method that employs two linear machine learning algorithms and take channel conditions and traffic demand (TD) as input. With the aid of a simple linear system, the proposed scheme allows for the optimum allocation of resources under dynamic channel and TD conditions. Additionally, efficient projection schemes are added to the proposed method so that the provided capacity is best approximated to TD when TD exceeds the maximum allowable system capacity. The simulation results show that the proposed method outperforms existing methods.

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

A Navigation System for Mobile Robot

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.118-120
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

ON THE STRUCTURE AND LEARNING OF NEURAL-NETWORK-BASED FUZZY LOGIC CONTROL SYSTEMS

  • C.T. Lin;Lee, C.S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.993-996
    • /
    • 1993
  • This paper addresses the structure and its associated learning algorithms of a feedforward multi-layered connectionist network, which has distributed learning abilities, for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed neural-network-based fuzzy logic control system (NN-FLCS) can be contrasted with the traditional fuzzy logic control system in their network structure and learning ability. An on-line supervised structure/parameter learning algorithm dynamic learning algorithm can find proper fuzzy logic rules, membership functions, and the size of output fuzzy partitions simultaneously. Next, a Reinforcement Neural-Network-Based Fuzzy Logic Control System (RNN-FLCS) is proposed which consists of two closely integrated Neural-Network-Based Fuzzy Logic Controllers (NN-FLCS) for solving various reinforcement learning problems in fuzzy logic systems. One NN-FLC functions as a fuzzy predictor and the other as a fuzzy controller. As ociated with the proposed RNN-FLCS is the reinforcement structure/parameter learning algorithm which dynamically determines the proper network size, connections, and parameters of the RNN-FLCS through an external reinforcement signal. Furthermore, learning can proceed even in the period without any external reinforcement feedback.

  • PDF

Effects of Multi-modal Guidance for the Acquisition of Sight Reading Skills: A Case Study with Simple Drum Sequences (멀티모달 가이던스가 독보 기능 습득에 미치는 영향: 드럼 타격 시퀀스에서의 사례 연구)

  • Lee, In;Choi, Seungmoon
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.217-227
    • /
    • 2013
  • We introduce a learning system for the sight reading of simple drum sequences. Sight reading is a cognitive-motor skill that requires reading of music symbols and actions of multiple limbs for playing the music. The system provides knowledge of results (KR) pertaining to the learner's performance by color-coding music symbols, and guides the learner by indicating the corresponding action for a given music symbol using additional auditory or vibrotactile cues. To evaluate the effects of KR and guidance cues, three learning methods were experimentally compared: KR only, KR with auditory cues, and KR with vibrotactile cues. The task was to play a random 16-note-long drum sequence displayed on a screen. Thirty university students learned the task using one of the learning methods in a between-subjects design. The experimental results did not show statistically significant differences between the methods in terms of task accuracy and completion time.