Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.172-175
/
2006
최근 다양한 게임 문화가 급속도로 성장함에 따라 보다 새로운 개념의 게임을 찾는 사용자의 요구가 증대 되고 있다. 기존의 게임은 획일화 되고 일방적인 사용자 환경으로 사용자가 일방적으로 게임을 하는 방식이었다. 때문에 사용자의 감성 데이터를 이용하여 사용자에게 게임 환경이 맞춰지는 "사용자 맞춤형" 게임은 기존의 게임에서 보다 진보한 새로운 방식이 될 것이다. 이 방식을 사용하기 위해서는 우선 사용자의 생체 데이터나 감성데이터를 포함한 뇌파를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감성 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감성 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 감성인식모델을 제안한다. 본 논문에서 제안한 감성인식 모델의 실험을 위하여 특정 공간 내에서 여러 사용자의 감정별 뇌파를 측정하고 실험을 통하여 획득한 데이터로 감정 DB를 구축한다. 구축된 DB를 본 논문에서 제안한 감성인식 모델로 학습을 하고 학습이 완료된 후 새로운 사용자의 뇌파를 입력 받은 후 현재 사용자의 감성을 인식한다. 감성인식과 더불어 집중도를 측정 하는 실험도 병행 한다. 본 논문에서 제안한 감성인식 모델의 성능을 측정하기 위하여 사용자의 수에 따른 감성 인식률을 측정함으로서 본 논문에서 제안한 감성인식 모델의 성능을 확인한다.
This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.
This paper concentrates on the results of experimental work on tensile strength of self-compacting concrete (SCC) caused by flexure, which is called rupture modulus. The work focused on concrete mixes having water/binder ratios of 0.35 and 0.45, which contained constant total binder contents of 500 $kg/m^3$ and 400 $kg/m^3$, respectively. The concrete mixes had four different dosages of a superplasticizer based on polycarboxylic with and without silica fume. The percentage of silica fume that replaced cement in this research was 10%. Based upon the experimental results, the existing equations for anticipating the rupture modulus of SCC according to its compressive strength were not exact enough. Therefore, it is decided to use artificial neural networks (ANN) for anticipating the rupture modulus of SCC from its compressive strength and workability. The conclusion was that the multi layer perceptron (MLP) networks could predict the tensile strength in all conditions, but radial basis (RB) networks were not exact enough in some circumstances. On the other hand, RB networks were more users friendly and they converged to the final networks quicker.
In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.
In this paper a new design of multi-layer perceptron(MLP) for camera calibration is proposed. Most existing techniques determine a transformation from 3D spatial points to their image points and camera parameters are tried to be estimated from the transformation. The technique proposed here, on the other hand, determines rays of sight uniquely from image points and parameters are estimated from the relationship using an MLP. By this approach projection and back-projection can be done more straightforwardly. Being based on a geometric model, a network design process becomes less ambiguous, which is a clear merit compared to other neural net based techniques. An MLP designed according to the technique proposed showed fast and stable learning in tests under various conditions.
Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.4
/
pp.399-407
/
2002
In this paper, a novel algorithm is proposed to reduce the blocking artifacts of block-based coded images by using block classification and MLP. In the proposed algorithm, we classify the block into four classes based on a characteristic of DCT coefficients. And then, according to the class information of neighborhood block, adaptive neural network filter is performed in horizontal and vertical block boundary. That is, for smooth region, horizontal edge region, vertical edge region, and complex region, we use a different two-layer neural network filter to remove blocking artifacts. Experimental results show that the proposed algorithm gives better results than the conventional algorithms both subjectively and objectively.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.380-384
/
2007
MLP(Multi-Layer Perceptron)를 이용한 학습은 간단한 구조에도 비선형 분류가 가능하다는 장점을 가지고 있다. 하지만 오류역전파 알고리즘을 사용함으로써 시간의 소모가 크고 원치 않는 결과값으로의 수렴가능성을 배제할 수 없다는 단점을 가지고 있다. 이는 초기설정의 의존도가 높기 때문에 발생하는 문제들로 좋은 결과값에 근접한 곳으로 초기화가 이루어지면 좋은 학습 성능을 보이지만 반대로 좋은 결과값으로부터 멀리 떨어진 곳으로 신경망의 초기화가 이루어지면 학습 성능이 현저히 낮아지는 현상을 보인다. 본 논문에서는 MLP 전체의 층을 대상으로 하는 본 학습이 이루어지기 전에 RBM(Restricted Boltzmann Machine)을 이용, 층간 선행학습을 행하고 그 결과로 얻어지는 가중치와 바이어스를 본 MLP 학습의 초기화 데이터로 사용하는 개선 MLP 학습 알고리즘을 제안한다. 이 방법을 사용함으로써 MLP 학습 속도향상은 물론 원치 않는 지역해로의 수렴까지 방지할 수 있어 전체적인 학습 성능향상이 가능하게 된다.
Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.114-114
/
2022
딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.