• 제목/요약/키워드: Multi-layer wire

검색결과 52건 처리시간 0.025초

다단 축류 압축기 정익 흡입면에서의 비정상 경계층 유동 특성 (Flow Characteristics in Unsteady Boundary Layer on Stator Blade of Multi-Stage Axial Compressor)

  • 신유환;;김광호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1210-1218
    • /
    • 2004
  • Experimental study was performed to investigate the flow behavior in boundary layer on the blade suction surface of a multi-stage axial flow compressor, which was focused on the third stage of the 4-stage Low Speed Research Compressor. Flow measurements in the boundary layer were obtained using a boundary layer hot wire probe, which was traversed normal to the blade suction surface at small increments by the probe traverse specially designed. Detailed boundary layer flow measurements covering most of the stator suction surface were taken and are described using time mean and ensemble averaged velocity profiles. Amplitude of the velocity fluctuation and turbulence intensity in the boundary layer flow are also discussed. At midspan, narrow but strong wake zone due to passing wake disturbances is generated in the boundary layer near the blade leading edge for the rotor blade passing period. Corner separation is observed at the tip region near the trailing edge, which causes to increase steeply the boundary layer thickness.

Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구 (A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires)

  • 김재훈;손형진;김성현
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

와이어 브러싱한 알루미늄 판재 표면 및 압연접합 계면의 미세조직 및 기계적 성질 (Microstructure Evolution and Mechanical Properties of Wire-Brushed Surface and Roll-Bonded Interface of Aluminum Sheets)

  • 김수현;김형욱;강주희;어광준
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.380-387
    • /
    • 2011
  • Wire brushing, which is a typical surface preparation method for roll bonding, has recently been highlighted as a potentially effective method for surface nanocrystallization. In the present study, the microstructure evolution and hardness of the wire-brushed surface and roll-bonded interface of a 1050 aluminum sheet were investigated. Wire brushing formed protruded layers with a nanocrystalline structure and extremely high surface hardness. After roll bonding, the protruded layers remained as hard layers at the interface. Due to their hardness and brittleness the interface hard layers, can affect the interface bonding properties and also play an important role determining the mechanical properties of multi-layered clad sheets.

툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작 (Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer)

  • 석익현;박종규
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

적층 스크린의 압력강하 및 열전달 특성 (Pressure Drop and Heat Transfer Characteristics of Multi-Layer Screen)

  • 송태호;안철우;김창기;고현진
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.419-425
    • /
    • 2000
  • Multiple layer of wire screen is widely used in many compact devices to filter particulates and to heat or cool fluids. However, data of flow resistance and heat transfer through such layers are rare to find and thus they are experimentally investigated in this study. Compressed air is made to flow through it to find the Ergun constants over a wide range of the Reynolds number. Also, unsteady heating of the wire screen is performed to find the equivalent heat transfer coefficient between the screen and the air by fitting the unsteady air temperature. The obtained coefficients are expressed in terms of the Reynolds number and the Prandtl number.

국소 벽면 진동에 의한 난류경계층 유동 변화 (Modification of Turbulent Boundary Layer Flow by Local Wall Vibration)

  • 김철규;전우평;박진일;김동주;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

내로우 갭 적용을 위한 핫와이어 송급 레이저용접 - 고속촬영을 통한 와이어 용융/이행 현상과 아크 포메이션 분석 - (Hot Wire Laser Welding of Multilayer for Narrow Gap - Analysis of Wire Melting/Transfer and Arc Formation Phenomenon by High Speed Imaging -)

  • 김경학;방한서;방희선
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.26-32
    • /
    • 2016
  • In this study, Hot-wire laser welding (HWLW) without keyhole which deposits filler material by feeding hot wire into the process zone has been performed to increase process performance. From the analysis of High Speed Imaging (HSI), for higher voltage, the process is prone to arc formation and drop transfer, which is disagreeable transfer mode. It is necessary that arc formation and drop (globular) transfer should be avoided by lower voltage. Therefore, continuous wire melting and transfer mode is preferred when adopting this process. The HWLW technique has high potential in terms of performance, precision, robustness and controllability for thick section of narrow gap.

고온초전도선재 제초기술과 개발 동향 (Manufacturing technology and R&D status of high temperature superconducting wire)

  • 오상수;하동우;하홍수;박찬;송규정;고락길;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.67-73
    • /
    • 2002
  • The development of high performance HTS wire is a key factor for various electrical applications of coils and cables. The purpose of this paper is to review and consider the main manufacturing technologies of HTS wire and its current status. A lot of efforts have been focused on the optimization of PIT parameters for Bi-2223/Ag wire. According to this, long Bi-2223 wires having Ic of 130 A were recently produced and their mass production has been underway in US. The current status performance of Bi-2223 wire is supposed to be used in power transmission cable because of its lower self-field property. Y-123 second generation conductor is extensively being developed throughout the world and many fabrication processes are competed with each other. 30 m-long Y-123 wire with Ic of 0.8 MA/$\textrm{cm}^2$ was recently fabricated using IBAD and PLD techniques in Japan. This result offers promise of scalable processing of practical multi-layer coated conductor.

  • PDF

다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산 (Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length)

  • 이지광;차귀수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권1호
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.