• Title/Summary/Keyword: Multi-image

Search Result 2,933, Processing Time 0.028 seconds

Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion (소비자의 부정적 브랜드 루머의 수용과 확산)

  • Lee, Won-jun;Lee, Han-Suk
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.65-96
    • /
    • 2012
  • Brand has received much attention from considerable marketing research. When consumers consume product or services, they are exposed to a lot of brand related stimuli. These contain brand personality, brand experience, brand identity, brand communications and so on. A special kind of new crisis occasionally confronting companies' brand management today is the brand related rumor. An important influence on consumers' purchase decision making is the word-of-mouth spread by other consumers and most decisions are influenced by other's recommendations. In light of this influence, firms have reasonable reason to study and understand consumer-to-consumer communication such as brand rumor. The importance of brand rumor to marketers is increasing as the number of internet user and SNS(social network service) site grows. Due to the development of internet technology, people can spread rumors without the limitation of time, space and place. However relatively few studies have been published in marketing journals and little is known about brand rumors in the marketplace. The study of rumor has a long history in all major social science. But very few studies have dealt with the antecedents and consequences of any kind of brand rumor. Rumor has been generally described as a story or statement in general circulation without proper confirmation or certainty as to fact. And it also can be defined as an unconfirmed proposition, passed along from people to people. Rosnow(1991) claimed that rumors were transmitted because people needed to explain ambiguous and uncertain events and talking about them reduced associated anxiety. Especially negative rumors are believed to have the potential to devastate a company's reputation and relations with customers. From the perspective of marketer, negative rumors are considered harmful and extremely difficult to control in general. It is becoming a threat to a company's sustainability and sometimes leads to negative brand image and loss of customers. Thus there is a growing concern that these negative rumors can damage brands' reputations and lead them to financial disaster too. In this study we aimed to distinguish antecedents of brand rumor transmission and investigate the effects of brand rumor characteristics on rumor spread intention. We also found key components in personal acceptance of brand rumor. In contextualist perspective, we tried to unify the traditional psychological and sociological views. In this unified research approach we defined brand rumor's characteristics based on five major variables that had been found to influence the process of rumor spread intention. The five factors of usefulness, source credibility, message credibility, worry, and vividness, encompass multi level elements of brand rumor. We also selected product involvement as a control variable. To perform the empirical research, imaginary Korean 'Kimch' brand and related contamination rumor was created and proposed. Questionnaires were collected from 178 Korean samples. Data were collected from college students who have been experienced the focal product. College students were regarded as good subjects because they have a tendency to express their opinions in detail. PLS(partial least square) method was adopted to analyze the relations between variables in the equation model. The most widely adopted causal modeling method is LISREL. However it is poorly suited to deal with relatively small data samples and can yield not proper solutions in some cases. PLS has been developed to avoid some of these limitations and provide more reliable results. To test the reliability using SPSS 16 s/w, Cronbach alpha was examined and all the values were appropriate showing alpha values between .802 and .953. Subsequently, confirmatory factor analysis was conducted successfully. And structural equation modeling has been used to analyze the research model using smartPLS(ver. 2.0) s/w. Overall, R2 of adoption of rumor is .476 and R2 of intention of rumor transmission is .218. The overall model showed a satisfactory fit. The empirical results can be summarized as follows. According to the results, the variables of brand rumor characteristic such as source credibility, message credibility, worry, and vividness affect argument strength of rumor. And argument strength of rumor also affects rumor intention. On the other hand, the relationship between perceived usefulness and argument strength of rumor is not significant. The moderating effect of product involvement on the relations between argument strength of rumor and rumor W.O.M intention is not supported neither. Consequently this study suggests some managerial and academic implications. We consider some implications for corporate crisis management planning, PR and brand management. This results show marketers that rumor is a critical factor for managing strong brand assets. Also for researchers, brand rumor should become an important thesis of their interests to understand the relationship between consumer and brand. Recently many brand managers and marketers have focused on the short-term view. They just focused on strengthen the positive brand image. According to this study we suggested that effective brand management requires managing negative brand rumors with a long-term view of marketing decisions.

  • PDF

The Impacts of Need for Cognitive Closure, Psychological Wellbeing, and Social Factors on Impulse Purchasing (인지폐합수요(认知闭合需要), 심리건강화사회인소대충동구매적영향(心理健康和社会因素对冲动购买的影响))

  • Lee, Myong-Han;Schellhase, Ralf;Koo, Dong-Mo;Lee, Mi-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.44-56
    • /
    • 2009
  • Impulse purchasing is defined as an immediate purchase with no pre-shopping intentions. Previous studies of impulse buying have focused primarily on factors linked to marketing mix variables, situational factors, and consumer demographics and traits. In previous studies, marketing mix variables such as product category, product type, and atmospheric factors including advertising, coupons, sales events, promotional stimuli at the point of sale, and media format have been used to evaluate product information. Some authors have also focused on situational factors surrounding the consumer. Factors such as the availability of credit card usage, time available, transportability of the products, and the presence and number of shopping companions were found to have a positive impact on impulse buying and/or impulse tendency. Research has also been conducted to evaluate the effects of individual characteristics such as the age, gender, and educational level of the consumer, as well as perceived crowding, stimulation, and the need for touch, on impulse purchasing. In summary, previous studies have found that all products can be purchased impulsively (Vohs and Faber, 2007), that situational factors affect and/or at least facilitate impulse purchasing behavior, and that various individual traits are closely linked to impulse buying. The recent introduction of new distribution channels such as home shopping channels, discount stores, and Internet stores that are open 24 hours a day increases the probability of impulse purchasing. However, previous literature has focused predominantly on situational and marketing variables and thus studies that consider critical consumer characteristics are still lacking. To fill this gap in the literature, the present study builds on this third tradition of research and focuses on individual trait variables, which have rarely been studied. More specifically, the current study investigates whether impulse buying tendency has a positive impact on impulse buying behavior, and evaluates how consumer characteristics such as the need for cognitive closure (NFCC), psychological wellbeing, and susceptibility to interpersonal influences affect the tendency of consumers towards impulse buying. The survey results reveal that while consumer affective impulsivity has a strong positive impact on impulse buying behavior, cognitive impulsivity has no impact on impulse buying behavior. Furthermore, affective impulse buying tendency is driven by sub-components of NFCC such as decisiveness and discomfort with ambiguity, psychological wellbeing constructs such as environmental control and purpose in life, and by normative and informational influences. In addition, cognitive impulse tendency is driven by sub-components of NFCC such as decisiveness, discomfort with ambiguity, and close-mindedness, and the psychological wellbeing constructs of environmental control, as well as normative and informational influences. The present study has significant theoretical implications. First, affective impulsivity has a strong impact on impulse purchase behavior. Previous studies based on affectivity and flow theories proposed that low to moderate levels of impulsivity are driven by reduced self-control or a failure of self-regulatory mechanisms. The present study confirms the above proposition. Second, the present study also contributes to the literature by confirming that impulse buying tendency can be viewed as a two-dimensional concept with both affective and cognitive dimensions, and illustrates that impulse purchase behavior is explained mainly by affective impulsivity, not by cognitive impulsivity. Third, the current study accommodates new constructs such as psychological wellbeing and NFCC as potential influencing factors in the research model, thereby contributing to the existing literature. Fourth, by incorporating multi-dimensional concepts such as psychological wellbeing and NFCC, more diverse aspects of consumer information processing can be evaluated. Fifth, the current study also extends the existing literature by confirming the two competing routes of normative and informational influences. Normative influence occurs when individuals conform to the expectations of others or to enhance his/her self-image. Whereas informational influence occurs when individuals search for information from knowledgeable others or making inferences based upon observations of the behavior of others. The present study shows that these two competing routes of social influence can be attributed to different sources of influence power. The current study also has many practical implications. First, it suggests that people with affective impulsivity may be primary targets to whom companies should pay closer attention. Cultivating a more amenable and mood-elevating shopping environment will appeal to this segment. Second, the present results demonstrate that NFCC is closely related to the cognitive dimension of impulsivity. These people are driven by careless thoughts, not by feelings or excitement. Rational advertising at the point of purchase will attract these customers. Third, people susceptible to normative influences are another potential target market. Retailers and manufacturers could appeal to this segment by advertising their products and/or services as products that can be used to identify with or conform to the expectations of others in the aspiration group. However, retailers should avoid targeting people susceptible to informational influences as a segment market. These people are engaged in an extensive information search relevant to their purchase, and therefore more elaborate, long-term rational advertising messages, which can be internalized into these consumers' thought processes, will appeal to this segment. The current findings should be interpreted with caution for several reasons. The study used a small convenience sample, and only investigated behavior in two dimensions. Accordingly, future studies should incorporate a sample with more diverse characteristics and measure different aspects of behavior. Future studies should also investigate personality traits closely related to affectivity theories. Trait variables such as sensory curiosity, interpersonal curiosity, and atmospheric responsiveness are interesting areas for future investigation.

  • PDF

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.