• Title/Summary/Keyword: Multi-dynamics

Search Result 963, Processing Time 0.03 seconds

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

Dynamic Analysis and Experiments of High Impulsive Force Device with Isolation System (완충시스템을 장착한 고충격 발생기구의 동특성 해석 및 실험)

  • Park, Moon-Sun;Kang, Tae-Ho;Byun, Young-Seop;Song, Joon-Beom;Ku, Tae-Wan;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.107-114
    • /
    • 2008
  • The aim of this study is to obtain the useful design guideline for high impulsive force device with an isolation system by the analytic approach of dynamics characteristics. In this study, the high impulsive force system was modeled and analyzed in view of multi-body dynamics, and verified the modeling and analysis result by the experiment of the high impulsive force device. Additionally, the dynamic analysis was performed for the isolation system with the selected coefficients of elastic spring and damper selected. Experimental result for the high impulsive force device with the isolation system was compared and analyzed. From the result, it was confirmed that the design guideline for the isolation system of the high impulsive force device was useful.

Network Neutrality in the Digital Convergence Era : a System Dynamics Model with Two-Sided Market Framework (디지털 컨버전스 환경에서 양면시장 플랫폼으로서의 인터넷망 중립성에 관한 동태적 분석)

  • Kim, Do-Hoon
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.75-94
    • /
    • 2011
  • The industrial ecosystem around the Internet services has been evolving since the Internet was first introduced. The Net Neutrality issue best represents the process of the evolution and presents an inevitable challenge that the industry should overcome. This paper deals with this structural change with the Two-Sided Market framework and provides a System Dynamics(SD) model to evaluate the economic implications of the net neutrality policy. In particular, our approach analyzes the policy impacts when two competing platforms (network providers) play a role of the platform in a typical two-sided market, which connects Content Providers(CPs) with users. Previous studies show that the indirect network externality between these two markets makes the entire system tip to one platform. When the multi-homing in the CP market is allowed as in our model, however, their argument may lose its validity. To examine the system behavior, conducted here is SD simulations of our model. The simulation results show that co-existence of the competing platforms persists with the network effects over a certain threshold. The net neutrality policy seems to lower the threshold based on our experimental outcomes.

Study on Optimum Curve Driving of Four-row Tracked Vehicle in Soft Ground using Multi-body Dynamics (다물체 동역학을 이용한 연약 지반 4열 궤도 차량의 최적 선회 주행 연구)

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Lim, Jun-Hyun;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2014
  • This paper proposes an optimum curve driving method for adeep-seabed mining robot(MineRo) in deep-sea soft ground. MineRo was designed as afour-row tracked vehicle. A study on the turning methods for the four-row tracked vehicle was conducted using three case by changing the velocity profile of each track. The configuration of the four-row tracked vehicle and soft ground equation are introduced, along with the dynamics analysis models of MineRo and soft ground, which were constructed using the commercial software DAFUL. Because the purpose of this study was to investigate a driving method on soft ground, the marine environment of the deep sea was not considered.

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.

Molecular Dynamics Simulations of Small n-Alkane Clusters in a Mesoscopic Solvent

  • Ko, Seo-Young;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.771-776
    • /
    • 2003
  • The structural and dynamic properties of small n-alkane clusters embedded in a mesoscopic solvent are investigated. The solvent interactions are taken into account through a multi-particle collision operator that conserves mass, momentum and energy and the solvent dynamics is updated at discrete time intervals. The cluster molecules interact among themselves and with the solvent molecules through intermolecular forces. The properties of n-heptane and n-decane clusters interacting with the mesoscopic solvent molecules through repulsive Lennard-Jones interactions are studied as a function of the number of the mesoscopic solvent molecules. Modifications of both the cluster and solvent structure as a result of cluster-solvent interactions are considered. The cluster-solvent interactions also affect the dynamics of the small n-alkane clusters.

Development of Realtime Simulator for Multibody Dynamics Analysis of Wheeled Vehicle on Soft Soil (연약지반을 고려한 차량 실시간 시뮬레이터 개발)

  • Hong, Sup;Kim, Hyung-Woo;Cho, Yun-Sung;Cho, Hui-Je;Jung, Ji-Hyun;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.116-122
    • /
    • 2011
  • A realtime simulator using an explicit integration method is introduced to improve the solving performance for the dynamic analysis of a wheeled vehicle. Because a full vehicle system has many parts, the development of a numerical technique for multiple d.o.f. and ground contacts has been required to achieve a realtime dynamics analysis. This study proposes an efficient realtime solving technique that considers the wheeled vehicle dynamics behavior with full degrees of freedom and wheel contact with soft ground such as sand or undersea ground. A combat vehicle was developed to verify this method, and its dynamics results are compared with commercial programs using implicit integration methods. The combat vehicle consists of a chassis, double wishbone type front and rear suspension, and drive train. Some cases of vehicle dynamics analysis are carried out to verify the realtime ratio.

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF