• 제목/요약/키워드: Multi-classification

검색결과 1,251건 처리시간 0.02초

훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류 (Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers)

  • 박노욱;유희영;김이현;홍석영
    • 대한원격탐사학회지
    • /
    • 제28권5호
    • /
    • pp.489-499
    • /
    • 2012
  • 이 논문에서는 원격탐사 자료의 분류를 목적으로 서로 다른 훈련 집단들과 분류자들로부터 생성된 분류 결과들을 결합하는 분류 틀을 제안하였다. 제안 분류 틀의 핵심 부분은 서로 다른 훈련 집단과 분류자들을 이용함으로써 분류 결과 사이의 다양성을 증가시켜서 결과적으로 분류 정확도를 향상시키는데 있다. 제안 분류 틀에서는 우선 서로 다른 샘플링 밀도를 가지는 서로 다른 훈련 집단들을 생성한 후에, 이들을 서로 다른 구분 능력을 나타내는 분류자들의 입력 훈련 자료로 사용한다. 그리고 초기 분류 결과들에 다수결 규칙을 적용하여 최종 분류 결과를 얻게 된다. 다중 시기 ENVISAT ASAR 자료를 이용한 토지 피복 분류사례 연구를 통해 제안 방법론의 적용 가능성을 검토하였다. 사례 연구에서 3개의 훈련 집단과 최대우도 분류자, 다층 퍼셉트론 분류자, support vector machine 등과 같은 3개의 분류자를 이용한 9개의 분류 결과를 결합하였다. 사례 연구 결과, 제안 분류 틀 안에서 토지 피복 구분에 관한 상호 보완적인 정보의 이용이 가능해져서 가장 높은 분류 정확도를 나타내었다. 서로 다른 결합들을 비교하였을 때, 다양성이 크지 않은 분류 결과들을 결합한 경우에는 분류 정확도의 향상이 나타나지 않았다. 따라서 다중 분류 시스템의 설계시 분류자들의 다양성을 확보하는 것이 중요함을 확인할 수 있었다.

환경요인의 다계층성을 고려한 생태지역 분류 (Ecoregion Classification using Multi-Hierarchy of Environmental Factors)

  • 정관용;양희문;김석권;박수진
    • 대한지리학회지
    • /
    • 제47권5호
    • /
    • pp.654-676
    • /
    • 2012
  • 본 연구는 산지 생태계의 능력과 잠재성의 공간적 분포를 파악하기 위해 다계층성을 고려한 생태지역 분류를 제시해 보고자 한다. 이를 위해 연구지역 일대를 대상으로 각 환경요인의 공간적 분포를 살펴보고, 지리통계(geostatistics)기법을 이용하여 각 환경변수의 계층성을 파악하였다. 마지막으로 적절한 생태지역 분류를 제시하기 위해서 임상도와 입지도를 이용하여 분류 및 평가를 실시하였다. 연구지역은 $1,168km^2$ 면적의 강원도 가리왕산 일대이다. 이 지역은 퇴적암 비율이 높게 나타나며, 그중에서 석회암과 관련된 지층이 가장 넓은 면적(36.6%)을 차지한다. 북쪽과 중앙을 중심으로 고도가 높은 산지가 대부분을 차지하며, 오대천과 평창강을 따라 평탄한 지역이 나타난다. 환경요인의 계층성을 살펴보면 지질과 고도가 상위계층을 차지하고, 지형분류(사면곡면률, 사면유역지수)가 하위 계층으로 나타났다. 생태지역분류 평가에서 '지질+고도+지형분류'가 고르게 높은 ${\chi}^2$의 통계값을 보이고 있어 이에 근거하여 생태지역 분류를 실시하였다. 제시된 생태지역분류는 넓은 퇴적암면적, 높은 산지비율, 큰 고도차이 등과 같은 연구지역의 독특한 환경특징이 반영된 결과로 파악하였다. 본 연구는 다양한 생태관련 주제를 통합하여 전체적인 산지 생태계 관리 및 이용 방안의 하나로 제시될 수 있을 것이다.

  • PDF

위치기반 서비스를 위한 다중레벨 DBMS에 질의 분류 컴포넌트의 설계 및 구현 (Design and Implementation of Query Classification Component in Multi-Level DBMS for Location Based Service)

  • 장석규;어상훈;김명근;배해영
    • 정보처리학회논문지D
    • /
    • 제12D권5호
    • /
    • pp.689-698
    • /
    • 2005
  • 현재 위치기반 서비스를 제공하기 위하여 다양한 시스템들이 사용되고 있다. 그러나 기존의 시스템들은 상당히 많은 사용자들에게 빠른 서비스를 제공하기에는 적합하지가 않다. 이러한 문제점을 해결하기 위하여 빠른 데이터 처리와 대용량의 데이터 관리를 동시에 지원하는 다중레벨 DBMS를 사용하여야 한다. 스냅샷을 갖는 다중레벨 DBMS는 디스크에 모든 데이터를 가지고 있으며, 빠른 처리를 요구하는 데이터는 스냅샷의 형태로 메인메모리 데이터베이스에서 관리한다. 이 시스템의 성능을 최적화하여 위치기반 서비스를 제공하기 위해서는 스냅샷에 존재하는 데이터를 효율적으로 사용할 수 있도록 질의를 분류하는 컴포넌트가 필요하다. 본 논문에서는 위치기반 서비스를 위한 다중레벨 DBMS에서 질의 분류 컴포넌트를 설계하고 구현한다. 제안된 컴포넌트는 입력된 질의를 메모리 질의, 디스크 질의, 하이브리드 질의로 분류하여 스냅샷 사용율을 높이고, 스냅샷의 일부분을 사용할 수 있도록 질의의 비공간과 공간 필터 조건을 분할하는 메커니즘을 사용하였다. 따라서, 제안된 컴포넌트는 효율적인 질의 분류를 통하여 스냅샷을 최대한 이용함으로써 시스템의 성능을 향상시킨다.

평행사변형 분류 알고리즘의 성능에 대한 연구 (A Study on the Performance of Parallelepiped Classification Algorithm)

  • 용환기
    • 한국지리정보학회지
    • /
    • 제4권4호
    • /
    • pp.1-7
    • /
    • 2001
  • 위성영상은 GIS 정보획득을 위한 가장 중요한 초기자료로서, 이로부터 주제도와 같은 유용한 정보를 추출하기 위해서는 위성영상 즉 다중스펙트럼 영상을 목적에 적합하게 분류하는 처리과정이 필요하다. 위성영상의 분류기법은 크게 감독기법과 무감독기법으로 나뉘는데, 본 논문에서는 감독분류기법 중의 하나인 평행사변형 알고리즘에서 군집의 초기값 설정이 알고리즘의 성능에 미치는 영향을 분석한다. 본 연구에서는 우선 직렬컴퓨터에서 평행사변형 알고리즘의 성능과 초기값 변화와의 관계를 살펴보고, 이를 확장하여 MIMD 병렬구조 컴퓨터 모델을 사용한 경우에 초기값의 변화가 평행사변형 알고리즘의 성능에 미치는 영향을 분석한다. 평행사변형 알고리즘의 성능은 초기값의 설정에 따라 직렬구조의 컴퓨터를 사용하는 경우에는 최고 2.4배, 그리고 MIMD 병렬구조 모델을 사용한 경우에는 최고 2.5배의 성능 향상을 보였다. 전산모의실험을 통해 위성영상의 감독분류기법에서 초기값이 평행사변형 분류알고리즘의 성능에 상당한 영향을 미치며, 직렬컴퓨터와 MIMD 병렬컴퓨터에서 초기값의 적절한 설정을 통해 분류기법의 성능이 향상됨을 확인하였다.

  • PDF

자동 분할과 ELM을 이용한 심장질환 분류 성능 개선 (Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.32-43
    • /
    • 2009
  • 본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.

도시지역 저류시설 분류체계 연구 (A study on the classification of storages in urban area)

  • 류재나;오재일;이호령
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.637-647
    • /
    • 2012
  • Recent series of flooding events in urban area has brought a growing concern on storage facilities as a major stormwater management method. The Korean Ministry of Environment has announced diverse plans to tackle the problem, including plans for multi-purpose storages which deal both the stormwater and wastewater. Even though storages can be categorized for different perspectives, classification of possible storages in urban area has not been throughly studied so far. This study investigated diverse references of urban storages and suggested systematic classifications on structural, functional and some other basis. Structural classification mainly concerns structural shape of facilities and includes (1)Cisterns & Rain barrels, (2)Forebays, (3)Dry basins, (4)Wet basins and (5)Constructed wetland. Those functions can be (1)flood prevention (2)water quality control and (3)reuse of stored water. Other criteria that categorize storages depend on (1)height, (2)location, (3)configuration, (4)depth, (5)site of the installation and (6)shape.

패턴설계요소기반의 디자인 분류 및 패턴탐색 알고리즘개발 - 맞춤양산형 야구복 자동패턴 설계시스템을 위한 - (Design Classification and Development of Pattern Searching Algorithm Based on Pattern Design Elements - With focus on Automatic Pattern Design System for Baseball Uniforms Manufactured under Custom-MTM System -)

  • 강인애;최경미;전정일
    • 한국의류산업학회지
    • /
    • 제13권5호
    • /
    • pp.734-742
    • /
    • 2011
  • This study has been undertaken as a basic research for automatic pattern design for baseball uniforms manufactured under custom-MTM system, propose building up of a system whereby various partial patterns are combined under an automatic design system and develop a multi-combination type pattern searching algorithm which allows development of a various designs. As a result of this, type classification based on pattern design elements includes side, open, collar, facing and panel type. Design have been divided into coarse classification ranging from level 1 to 7 according to pattern design elements, based on a design distribution chart. Out of 7 such levels, 3 major types determining design which are, more specifically, level 1 sleeve type, level 2 open type and level 3 collar type, have been taken and combined to determine a total of 12 types to be used for design classification codes. Respective name of style and patterns have been coded using alphabet and numerals. Totally, pattern searching algorithm of multi-combination type has been developed whereby combination of patterns belonging to a specific style can be retrieved automatically once that style name is designated on the automatic pattern design system.

Neural and MTS Algorithms for Feature Selection

  • Su, Chao-Ton;Li, Te-Sheng
    • International Journal of Quality Innovation
    • /
    • 제3권2호
    • /
    • pp.113-131
    • /
    • 2002
  • The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.

다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류 (Land cover classification of a non-accessible area using multi-sensor images and GIS data)

  • 김용민;박완용;어양담;김용일
    • 한국측량학회지
    • /
    • 제28권5호
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

공간지역확장과 계층집단연결 기법을 이용한 무감독 영상분류 (Unsupervised Image Classification Using Spatial Region Growing Segmentation and Hierarchical Clustering)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.57-69
    • /
    • 2001
  • 본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.