이 논문에서는 원격탐사 자료의 분류를 목적으로 서로 다른 훈련 집단들과 분류자들로부터 생성된 분류 결과들을 결합하는 분류 틀을 제안하였다. 제안 분류 틀의 핵심 부분은 서로 다른 훈련 집단과 분류자들을 이용함으로써 분류 결과 사이의 다양성을 증가시켜서 결과적으로 분류 정확도를 향상시키는데 있다. 제안 분류 틀에서는 우선 서로 다른 샘플링 밀도를 가지는 서로 다른 훈련 집단들을 생성한 후에, 이들을 서로 다른 구분 능력을 나타내는 분류자들의 입력 훈련 자료로 사용한다. 그리고 초기 분류 결과들에 다수결 규칙을 적용하여 최종 분류 결과를 얻게 된다. 다중 시기 ENVISAT ASAR 자료를 이용한 토지 피복 분류사례 연구를 통해 제안 방법론의 적용 가능성을 검토하였다. 사례 연구에서 3개의 훈련 집단과 최대우도 분류자, 다층 퍼셉트론 분류자, support vector machine 등과 같은 3개의 분류자를 이용한 9개의 분류 결과를 결합하였다. 사례 연구 결과, 제안 분류 틀 안에서 토지 피복 구분에 관한 상호 보완적인 정보의 이용이 가능해져서 가장 높은 분류 정확도를 나타내었다. 서로 다른 결합들을 비교하였을 때, 다양성이 크지 않은 분류 결과들을 결합한 경우에는 분류 정확도의 향상이 나타나지 않았다. 따라서 다중 분류 시스템의 설계시 분류자들의 다양성을 확보하는 것이 중요함을 확인할 수 있었다.
본 연구는 산지 생태계의 능력과 잠재성의 공간적 분포를 파악하기 위해 다계층성을 고려한 생태지역 분류를 제시해 보고자 한다. 이를 위해 연구지역 일대를 대상으로 각 환경요인의 공간적 분포를 살펴보고, 지리통계(geostatistics)기법을 이용하여 각 환경변수의 계층성을 파악하였다. 마지막으로 적절한 생태지역 분류를 제시하기 위해서 임상도와 입지도를 이용하여 분류 및 평가를 실시하였다. 연구지역은 $1,168km^2$ 면적의 강원도 가리왕산 일대이다. 이 지역은 퇴적암 비율이 높게 나타나며, 그중에서 석회암과 관련된 지층이 가장 넓은 면적(36.6%)을 차지한다. 북쪽과 중앙을 중심으로 고도가 높은 산지가 대부분을 차지하며, 오대천과 평창강을 따라 평탄한 지역이 나타난다. 환경요인의 계층성을 살펴보면 지질과 고도가 상위계층을 차지하고, 지형분류(사면곡면률, 사면유역지수)가 하위 계층으로 나타났다. 생태지역분류 평가에서 '지질+고도+지형분류'가 고르게 높은 ${\chi}^2$의 통계값을 보이고 있어 이에 근거하여 생태지역 분류를 실시하였다. 제시된 생태지역분류는 넓은 퇴적암면적, 높은 산지비율, 큰 고도차이 등과 같은 연구지역의 독특한 환경특징이 반영된 결과로 파악하였다. 본 연구는 다양한 생태관련 주제를 통합하여 전체적인 산지 생태계 관리 및 이용 방안의 하나로 제시될 수 있을 것이다.
현재 위치기반 서비스를 제공하기 위하여 다양한 시스템들이 사용되고 있다. 그러나 기존의 시스템들은 상당히 많은 사용자들에게 빠른 서비스를 제공하기에는 적합하지가 않다. 이러한 문제점을 해결하기 위하여 빠른 데이터 처리와 대용량의 데이터 관리를 동시에 지원하는 다중레벨 DBMS를 사용하여야 한다. 스냅샷을 갖는 다중레벨 DBMS는 디스크에 모든 데이터를 가지고 있으며, 빠른 처리를 요구하는 데이터는 스냅샷의 형태로 메인메모리 데이터베이스에서 관리한다. 이 시스템의 성능을 최적화하여 위치기반 서비스를 제공하기 위해서는 스냅샷에 존재하는 데이터를 효율적으로 사용할 수 있도록 질의를 분류하는 컴포넌트가 필요하다. 본 논문에서는 위치기반 서비스를 위한 다중레벨 DBMS에서 질의 분류 컴포넌트를 설계하고 구현한다. 제안된 컴포넌트는 입력된 질의를 메모리 질의, 디스크 질의, 하이브리드 질의로 분류하여 스냅샷 사용율을 높이고, 스냅샷의 일부분을 사용할 수 있도록 질의의 비공간과 공간 필터 조건을 분할하는 메커니즘을 사용하였다. 따라서, 제안된 컴포넌트는 효율적인 질의 분류를 통하여 스냅샷을 최대한 이용함으로써 시스템의 성능을 향상시킨다.
위성영상은 GIS 정보획득을 위한 가장 중요한 초기자료로서, 이로부터 주제도와 같은 유용한 정보를 추출하기 위해서는 위성영상 즉 다중스펙트럼 영상을 목적에 적합하게 분류하는 처리과정이 필요하다. 위성영상의 분류기법은 크게 감독기법과 무감독기법으로 나뉘는데, 본 논문에서는 감독분류기법 중의 하나인 평행사변형 알고리즘에서 군집의 초기값 설정이 알고리즘의 성능에 미치는 영향을 분석한다. 본 연구에서는 우선 직렬컴퓨터에서 평행사변형 알고리즘의 성능과 초기값 변화와의 관계를 살펴보고, 이를 확장하여 MIMD 병렬구조 컴퓨터 모델을 사용한 경우에 초기값의 변화가 평행사변형 알고리즘의 성능에 미치는 영향을 분석한다. 평행사변형 알고리즘의 성능은 초기값의 설정에 따라 직렬구조의 컴퓨터를 사용하는 경우에는 최고 2.4배, 그리고 MIMD 병렬구조 모델을 사용한 경우에는 최고 2.5배의 성능 향상을 보였다. 전산모의실험을 통해 위성영상의 감독분류기법에서 초기값이 평행사변형 분류알고리즘의 성능에 상당한 영향을 미치며, 직렬컴퓨터와 MIMD 병렬컴퓨터에서 초기값의 적절한 설정을 통해 분류기법의 성능이 향상됨을 확인하였다.
본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.
Recent series of flooding events in urban area has brought a growing concern on storage facilities as a major stormwater management method. The Korean Ministry of Environment has announced diverse plans to tackle the problem, including plans for multi-purpose storages which deal both the stormwater and wastewater. Even though storages can be categorized for different perspectives, classification of possible storages in urban area has not been throughly studied so far. This study investigated diverse references of urban storages and suggested systematic classifications on structural, functional and some other basis. Structural classification mainly concerns structural shape of facilities and includes (1)Cisterns & Rain barrels, (2)Forebays, (3)Dry basins, (4)Wet basins and (5)Constructed wetland. Those functions can be (1)flood prevention (2)water quality control and (3)reuse of stored water. Other criteria that categorize storages depend on (1)height, (2)location, (3)configuration, (4)depth, (5)site of the installation and (6)shape.
This study has been undertaken as a basic research for automatic pattern design for baseball uniforms manufactured under custom-MTM system, propose building up of a system whereby various partial patterns are combined under an automatic design system and develop a multi-combination type pattern searching algorithm which allows development of a various designs. As a result of this, type classification based on pattern design elements includes side, open, collar, facing and panel type. Design have been divided into coarse classification ranging from level 1 to 7 according to pattern design elements, based on a design distribution chart. Out of 7 such levels, 3 major types determining design which are, more specifically, level 1 sleeve type, level 2 open type and level 3 collar type, have been taken and combined to determine a total of 12 types to be used for design classification codes. Respective name of style and patterns have been coded using alphabet and numerals. Totally, pattern searching algorithm of multi-combination type has been developed whereby combination of patterns belonging to a specific style can be retrieved automatically once that style name is designated on the automatic pattern design system.
The relationships among multi-dimensional data (such as medical examination data) with ambiguity and variation are difficult to explore. The traditional approach to building a data classification system requires the formulation of rules by which the input data can be analyzed. The formulation of such rules is very difficult with large sets of input data. This paper first describes two classification approaches using back-propagation (BP) neural network and Mahalanobis distance (MD) classifier, and then proposes two classification approaches for multi-dimensional feature selection. The first one proposed is a feature selection procedure from the trained back-propagation (BP) neural network. The basic idea of this procedure is to compare the multiplication weights between input and hidden layer and hidden and output layer. In order to simplify the structure, only the multiplication weights of large absolute values are used. The second approach is Mahalanobis-Taguchi system (MTS) originally suggested by Dr. Taguchi. The MTS performs Taguchi's fractional factorial design based on the Mahalanobis distance as a performance metric. We combine the automatic thresholding with MD: it can deal with a reduced model, which is the focus of this paper In this work, two case studies will be used as examples to compare and discuss the complete and reduced models employing BP neural network and MD classifier. The implementation results show that proposed approaches are effective and powerful for the classification.
This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.
본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.