• Title/Summary/Keyword: Multi-class SVMs

Search Result 16, Processing Time 0.022 seconds

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

The Performance Improvement of Face Recognition Using Multi-Class SVMs (다중 클래스 SVMs를 이용한 얼굴 인식의 성능 개선)

  • 박성욱;박종욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.43-49
    • /
    • 2004
  • The classification time required by conventional multi-class SVMs(Support Vector Machines) greatly increases as the number of pattern classes increases. This is due to the fact that the needed set of binary class SVMs gets quite large. In this paper, we propose a method to reduce the number of classes by using nearest neighbor rule (NNR) in the principle component analysis and linear discriminant analysis (PCA+LDA) feature subspace. The proposed method reduces the number of face classes by selecting a few classes closest to the test data projected in the PCA+LDA feature subspace. Results of experiment show that our proposed method has a lower error rate than nearest neighbor classification (NNC) method. Though our error rate is comparable to the conventional multi-class SVMs, the classification process of our method is much faster.

An Intelligent Fault Detection and Diagnosis Approaches using Parzen Density Estimation and Multi-class SVMs (Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장진단 방법)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.87-91
    • /
    • 2009
  • 본 논문은 상대적으로 새로운 기법인 Parzen Density Estimation과 Multi-class SVM을 이용한 지능형 고장 탐색과 진단 방법을 제안하고 있다. 본 연구에서는 롤링 베어링을 대상으로 고장을 탐색하고 진단하기 위한 방법을 제안하는데 Parzen Density Estimation과 Multi-class SVM은 고장 클래스를 잘 표현할 수 있다. Parzen Density Estimation은 새로운 패턴 데이터의 거절과 알려진 데이터 패턴의 밀도의 평가에 의해 새로운 패턴을 찾아낼 수 있고, Multi-class SVM 기반의 방법은 여러 클래스의 고장을 support vector로 표현하여 고장 패턴을 찾아낼 수 있다. 본 연구에서는 실제의 다중 클래스를 가지는 롤링 베어링의 고장 데이터를 사용하여 고장 패턴을 탐색하는 과정을 보여주는데, 커널함수의 적절한 파라미터의 선택에 의한 Multi-class SVM 기반의 방법이 multi-layer perceptron이나 Parzen Density Estimation 방법보다 우수함을 입증한다.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Using Estimated Probability from Support Vector Machines for Credit Rating in IT Industry

  • Hong, Tae-Ho;Shin, Taek-Soo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.509-515
    • /
    • 2005
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved it more powerful than traditional artificial neural networks (ANNs)(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al, 2005; Kim, 2003). The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is cost-sensitive. Therefore, it is necessary to convert the output of the classifier into well-calibrated posterior probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create probabilities (Platt, 1999; Drish, 2001). This study applies a method to estimate the probability of outputs of SVM to bankruptcy prediction and then suggests credit scoring methods using the estimated probability for bank's loan decision making.

  • PDF

Multi-class Cancer Classification by Integrating OVR SVMs based on Subsumption Architecture (포섭 구조기반 OVR SVM 결합을 통한 다중부류 암 분류)

  • Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.37-39
    • /
    • 2006
  • 지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

Multiclass SVM Model with Order Information

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.331-334
    • /
    • 2006
  • Original Support Vsctor Machines (SVMs) by Vapnik were used for binary classification problems. Some researchers have tried to extend original SVM to multiclass classification. However, their studies have only focused on classifying samples into nominal categories. This study proposes a novel multiclass SVM model in order to handle ordinal multiple classes. Our suggested model may use less classifiers but predict more accurately because it utilizes additional hidden information, the order of the classes. To validate our model, we apply it to the real-world bond rating case. In this study, we compare the results of the model to those of statistical and typical machine learning techniques, and another multi class SVM algorithm. The result shows that proposed model may improve classification performance in comparison to other typical multiclass classification algorithms.