• 제목/요약/키워드: Multi-class Classification

검색결과 231건 처리시간 0.025초

SVMs 을 이용한 유도전동기 지능 결항 진단 (Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines)

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

신경회로망을 이용한 ARS 장애음성의 식별에 관한 연구 (Classification of Pathological Voice from ARS using Neural Network)

  • 조철우;김광인;김대현;권순복;김기련;김용주;전계록;왕수건
    • 음성과학
    • /
    • 제8권2호
    • /
    • pp.61-71
    • /
    • 2001
  • Speech material, which is collected from ARS(Automatic Response System), was analyzed and classified into disease and non-disease state. The material include 11 different kinds of diseases. Along with ARS speech, DAT(Digital Audio Tape) speech is collected in parallel to give the bench mark. To analyze speech material, analysis tools, which is developed local laboratory, are used to provide an improved and robust performance to the obtained parameters. To classify speech into disease and non-disease class, multi-layered neural network was used. Three different combinations of 3, 6, 12 parameters are tested to obtain the proper network size and to find the best performance. From the experiment, the classification rate of 92.5% was obtained.

  • PDF

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

STag: Supernova Tagging and Classification

  • Davison, William;Parkinson, David;Tucker, Brad E.
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.45.3-46
    • /
    • 2021
  • Supernovae classes have been defined phenomenologically, based on spectral features and time series data, since the specific details of the physics of the different explosions remain unrevealed. However, the number of these classes is increasing as objects with new features are observed, and the next generation of large-surveys will only bring more variety to our attention. We apply the machine learning technique of multi-label classification to the spectra of supernovae. By measuring the probabilities of specific features or 'tags' in the supernova spectra, we can compress the information from a specific object down to that suitable for a human or database scan, without the need to directly assign to a reductive 'class'. We use logistic regression to assign tag probabilities, and then a feed-forward neural network to filter the objects into the standard set of classes, based solely on the tag probabilities. We present STag, a software package that can compute these tag probabilities and make spectral classifications.

  • PDF

블록 분류와 MLP를 이용한 블록 부호화 영상에서의 적응적 블록화 현상 제거 (Adaptive Blocking Artifacts Reduction in Block-Coded Images Using Block Classification and MLP)

  • 권기구;김병주;이석환;이종원;권성근;이건일
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.399-407
    • /
    • 2002
  • 본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

확률밀도함수와 KOMPSAT-3A를 활용한 산불피해강도 분류 (Forest Fire Severity Classification Using Probability Density Function and KOMPSAT-3A)

  • 이승민;정종철
    • 대한원격탐사학회지
    • /
    • 제35권6_4호
    • /
    • pp.1341-1350
    • /
    • 2019
  • 본 연구는 산불 전후 KOMPSAT-3A 영상을 사용하여 산불피해지역을 분석하는 것을 목적으로 한다. KOMPSAT 시리즈 중 KOMPSAT-3A는 적외선 및 고해상도의 멀티 스펙트럼 밴드를 가진 VHR위성이다. 하지만, KOMPSAT-3A를 활용하여 산불피해강도를 분류하는 연구는 부족한 실정이다. 따라서 본 연구에서는 KOMPSAT-3A의 산불 피해강도를 분류하기 위한 새로운 알고리즘을 제시하는 것을 목표로 한다. 또한, 본 연구에서는 산불 피해지역에 대한 참조자료로 Sentinel-2로 생성한 dNBR을 사용하였다. 본 연구의 연구 지역은 2019년 4월 4일 강릉에서 발생한 산불 피해지역으로 선정하였다. 본 연구에서는 산불피해구간을 산정하기 위한 알고리즘으로 오픈 소스 통계 프로그램인 R software의 확률분포함수를 사용하였다. KOMPSAT-3A에서 산불 피해지역은 산불 전, 후 NDVI의 변화에 따라 생성되었다. 산불피해강도는 분포 함수의 표준 편차를 사용하여 각 등급 크기를 산정하였다. 총 5개 구간에 따른 산불 피해 강도가 효과적으로 분류되었다.

빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델 (Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment)

  • 김영수;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.600-608
    • /
    • 2017
  • 최근 인터넷의 급격한 확장에 따른 정보의 양이 기하급수적으로 증가하고 있다. 그러나 실제 사용자에게 필요한 정보는 극히 일부분으로 사용자가 원하는 정보를 찾는데 까지는 부가적인 시간과 노력이 요구된다. 따라서 검색어로 검색된 문서에 대한 유사도 평가를 통한 계층적 유사 정보와 검색 우선순위에 대한 정보를 제공할 필요성이 있다. 이를 위해서 검색어를 구성하고 있는 키워드의 동시 발생 빈도를 고려한 검색 문서에 대한 유사도를 기반으로 문서 클러스터를 구성하고 SVM을 적용한 빅 데이터 기반 계층적 유형 분류 모델을 제안한다. 계층적 분류방법과 SVM 분류기의 결합은 문서의 계층이 기하급수적으로 늘어나는 웹 문서의 경우에 높은 성능을 얻을 수 있다. 제안된 모델은 정확하고 신속한 검색을 제공하는 정보검색시스템의 응용 모델로 활용될 수 있다.

A Multi-Objective TRIBES/OC-SVM Approach for the Extraction of Areas of Interest from Satellite Images

  • Benhabib, Wafaa;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.321-339
    • /
    • 2017
  • In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.

계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출 (Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG)

  • 이도훈;조백환;박관수;송수화;이종실;지영준;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권6호
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.