• Title/Summary/Keyword: Multi-channel Filtered-x LMS

Search Result 13, Processing Time 0.021 seconds

Active Vibration Control of Acoustically Loaded Flexible Plate Enclosure Using Multi-Channel Control Algorithm (다채널 제어알고리듬을 이용한 음향 가진된 밀폐계 평판의 능동진동제어)

  • Hong, Jin-Seok;Park, Su-Hong;Kim, Heung-Seop;O, Jae-Eung;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1390-1397
    • /
    • 2000
  • This paper presents the multi-channel active vibration control of a flexible plate of the acoustically loaded enclosure. The flexible plate was excited acoustically with sinusoidal and white noise input. The control was performed by two piezo ceramic actuators and two accelerometers. The experimental results were compared with the single channel control results. In the case of white noise input, 20 dB of vibration reduction was achieved below 300Hz frequency range. The experimental results demonstrate that multi-channel filtered-x LMS algorithm is effective than single-channel filtered-x LMS algorithm in active vibration control of plate.

Multi-channel normalized FxLMS algorithm for active noise control (능동 소음 제어를 위한 정규화된 다채널 FxLMS 알고리즘)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.280-287
    • /
    • 2016
  • In this paper, we propose a normalization algorithm that can be applied to adaptive filters for multi-channel active noise control. The FxLMS (Filtered-x Least Mean Square) algorithm for the single-channel active noise control can be normalized in the same way as the NLMS (Normalized Least Mean Square) algorithm, whereas in case of the multi-channel active noise control, the single-channel normalization for the FxLMS algorithm cannot be extended to the normalization for the multi-channel FxLMS algorithm straightforwardly. First, we adopt a generalized normalization algorithm for the multi-channel FxLMS algorithm based on the principle of minimal disturbance and then, proposed a normalized algorithm considering only diagonal elements to avoid computation for matrix inversion. We carried out performance comparisons of the proposed algorithm with other algorithms without normalization. It is shown that the proposed algorithm presents better convergence characteristics under non-stationary environments.

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

A Robustness Improvement of Adjoint-LMS Algorithms for Active Noise Control (능동소음제어를 위한 Adjoint-LMS 알고리즘의 강인성 개선)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.171-177
    • /
    • 2016
  • Noise problem that occurs in living environment is a big trouble in the economic, social and environmental aspects. In this paper, the filtered-X LMS algorithms, the adjoint LMS algorithms, and the robust adjoint LMS algorithms will be introduced for applications in active noise control(ANC). The filtered-X LMS algorithms is currently the most popular method for adapting a filter when the filter exits a transfer function in the error path. The adjoint LMS algorithms, that prefilter the error signals instead of divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of multi-channel ANC systems such as the 3D space. To improve performance of the adjoint LMS ANC system, an off-line measured transfer function is connected parallel to the LMS filter. This parallel-fixed filter acts as a noise controller only when the LMS filter is abnormal condition. The superior performance of the proposed system was compared through simulation with the adjoint LMS ANC system when the adaptive filter is in normal and abnormal condition.

Active Noise Control of Induction Motor using Co-FXLMS Algorithm (Co-FXLMS 알고리즘을 이용한 유도전동기의 능동소음제어)

  • Kim, Young-Min;Nam, Hyun-Do;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, the active noise control experiment has been performed using induction motor noises. While the noises were measured, a induction motor was operated in different speed. For the simulation of ANC(Active Noise Control), test-bed is composed a multi-channel ANC system was constructed. In order to compare the control performance, we performed noise reduction simulations of ANC by Co-FXLMS algorithm and FXLMS algorithm. Through the simulation results, we confirmed that convergence performance and noise decrease effect of the proposed Co-FXLMS algorithm have been improved from existing FXLMS algorithm.

Narrowband Active Control of Noise in Thermal Power Plants (협대역 능동소음 제어기법을 이용한 화력발전소 소음제어)

  • 남현도;서성대;황정현
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.34-40
    • /
    • 2001
  • In this paper, a narrowband active noise control system to reduce the noise in thermal power plants is proposed. The narrowband active noise control system contains rectangular wave generator and has a multi channel feed forward adaptive algorithms which uses the adjoint LMS algorithm. Although the effectiveness have been proven in the filtered-X LMS broadband active noise control system, this algorithm has much more computational complexity than that of narrowband active noise control system. The proposed active control system that uses the adjoint LMS algorithm, compared to the previous broadband active noise control system, not only is more effective in controlling narrowband noise but also has a more stable structure. Adaptive filter contains the FIR structure and IIR structure for primary and secondary path models. The simulation proves the effectiveness of the proposed algorithm.

  • PDF

Active Structural Acoustic Control for Reduction of Radiated Sound from Structure (구조물에서 방사되는 소음을 저감하기 위한 능동구조음향제어)

  • O, Jae-Eung;Hong, Jin-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1410-1415
    • /
    • 2001
  • Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved.

Active Structural Acoustic Control for Radiated Sound Reduction in Plate (평판에서의 방사소음 저감을 위한 능동구조음향제어)

  • Hong, Jin-Seok;Oh, Jae-Eung;Lee, You-Yub;Shin, Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.608-612
    • /
    • 2000
  • Active control of sound radiation(using active structural acoustic control) from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Control structural input are achieved by two piezoceramic actuators bonded to the surface of the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The control approach are based on a multi-channel filtered-x LMS algorithm. The results demonstrate that attenuation of sound levels of 3dB, 13dB are achieved.

  • PDF

A Multi-Channel Active Noise Control System for Controlling Humming Noise Generated by a Transformer (변압기 소음제어를 위한 다중채널 능동소음제어 시스템)

  • 이혁재;박영철;윤대희;차일환
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1137-1144
    • /
    • 1999
  • Most of ANC(active noise control) researches are focused on adaptive algorithms, computer simulations and implementations of single-channel system in experimental environments. In this paper, a multi-channel ANC system based on DSP's was developed to obtain global attenuations over wide region and applied to the active control of the humming noise generated by a transformer. The developed ANC system including 24 microphones and 12 spearkers was applied to the real transformer noise reduction problem. Results showed that the control system could successfully control the humming noise over the region of interest.

  • PDF

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.