• Title/Summary/Keyword: Multi-cavity injection mold

Search Result 57, Processing Time 0.031 seconds

Injection Mold Technology of Protein Chip for Point-of-Care (현장진단용 단백질 칩 사출금형기술)

  • Lee, Sung-Hee;Ko, Young-Bae;Lee, Jong-Won;Jung, Hae-Chul;Park, Jae-Hyun;Lee, Ok-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2012
  • A multi-cavity injection mold system of protein chip for point-of-care with cavity temperature and pressure sensors was proposed in this work. In advance of manufacturing for the multi-cavity injection mold system, a single cavity injection mold system to mold protein chip was considered. Injection molding analysis for the presented system was performed to optimize the process of the molding and suggest guides to design. On the basis of the results for the single cavity system, a multi-cavity injection mold system for protein chip was analyzed, designed and manufactured with cavity temperature and pressure sensors. Results of balanced filling for protein chip models were obtained from the presented mold system.

  • PDF

Runner Design for Filling Balance in Multi-cavity Injection Mold (다수 캐비티 사출금형에서 충전 균형을 위한 런너의 설계)

  • Kang, M.A.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.329-332
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of melded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

Manufacturing and Molding Technology of $500{\mu}m$ 8Cavity Injection Molding System (500um급 8캐비티 사출금형설계 제작 및 성형기술)

  • Lee, S.H.;Cho, K.H.;Lee, J.W.;Ko, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • Recently, the need of thin-walled injection molding and enhancement of its productivity is greatly increased. In this study, we designed and manufactured a injection molding system, which can mold a part with the thickness of $500{\mu}m$ and 8 cavity. And processing technique for the multi-cavity injection molding system, which is capable of mass productivity on the plastic parts, was considered. The problems of unbalance/imbalance on the molding process for the multi-cavity mold were predicted by numerical analysis using plastic injection molding commercial code. In addition, controllable system of melt front filling was introduced for a balanced filling using the mold temperature sensor on injection mold. It was shown that balanced filling with the suggested injection molding system was possible for $500{\mu}m$ plastic parts with 8 cavity layout.

  • PDF

The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold (다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF

The Effect of Filling Imbalances on the Molding Quality in the Multy-Cavity Injection Mold (다수캐비티 사출금형에서 충전 불균형이 성형 품질에 미치는 영향)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.89-94
    • /
    • 2008
  • The injection molding process is a predominant method for producing plastic parts. In order to maximize productivity and molding quality in a injection mold, it is important that each cavity in a multi-cavity injection mold is identical. This requires that cavity dimensions should be identical and delivery system of melt to each cavity have to be the same. Despite the geometrically balanced layout in multi-cavity injection mold more than 4 cavities, it has been observed that the filling in each cavity results in imbalances. Most of cases, this phenomenon of filling imbalances have a bad effect on dimension accuracy, warpage, molding appearance and strength of molding parts. In this study, experiment were conducted to investigate the effect of filling imbalances on the molding quality(surface gloss, shrinkage, tensile strength) in the multy-cavity injection mold.

  • PDF

The Effects of Runner Core Pin on the Filling Imbalance Occurred in Multi Cavity Injection Mold (다수 캐비티 사출금형에서 러너 코어핀이 충전불균형에 미치는 영향)

  • Kang C. M.;Jeong Y. D.;Han K. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.39-42
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filling imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

Development of Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에서 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.13-16
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filing imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.117-121
    • /
    • 2004
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. But, when injection molding is performed using a mold with balanced runner system filling imbalances are occurred between the cavity to cavity. The previous studies by Beaumont at. all reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes of filling imbalance for 3 plate type mold with 8 cavities. And we exhibited a new so called 4BF mold (4 plate type Balanced Filling Mold) to be possible filling balance. We conducted a experimental injection molding to verify the efficiency of the 4BF mold. In the results of the experiment, we could confirmed the balanced filling possibility of the 4BF mold.

A study on coupling effect during lifting (다수 캐비티 사출금형에서 충전 불균형 원인 분석 및 스크류 런너 디자인)

  • Kang, Min-A;Kim, Hae-Yeon;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.155-158
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

A New Runner System Melt-Buffer for Filling Balance in Injection Mold (사출금형에서 균형충전을 위한 새로운 러너시스템 멜트버퍼)

  • Jeong, Y.D.;Jang, M.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • The injection mold with multi-cavity is essential for mass production of plastic products. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. However, despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in injection molding. To solve these problems, many studies such as Melt Flipper, RC Pin, and others have been presented. The results of these studies have been an effect on filling balances in multi-cavity molds. But, those have had a limitation that additional insert parts must have existed in the mold. In this study, a new runner system is suggested for filling balance between cavity to cavity using "Melt-Buffer" with simple change of runner shape. A series of simulation to confirm feasibility of Melt-Buffer's effects was conducted using injection molding CAE program. Also, a series of injection molding experiment was conducted using plastic materials such as ABS and PP. As results of this study, feasibilities of filling balances by Melt-Buffer were confirmed.