• Title/Summary/Keyword: Multi-body rigid model

Search Result 51, Processing Time 0.028 seconds

Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working (컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석)

  • Kim, Jungyun;Kim, Jingon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.379-384
    • /
    • 2014
  • This article describes the dynamic behaviors of a rubber tired gantry crane(RTGC) under typical load conditions which are used in the design of gantry cranes. In order to investigate the dynamic characteristics of an RTGC, we developed a finite element crane model for its huge structure. The finite element model was validated with the modal test results, e.g., natural frequencies and normal modes. And other components of RTGC were converted into detailed 3D CAD models and finally transformed to rigid body models in a dynamic simulation program ADAMS. The load conditions considered in this paper were a normal operating condition(OP1) and container hanging condition with no external loads. As a result, we could find there was large influence of crane's vibration owing to its structural stiffness and deformation. And the vibration of crane could made the movements of RTGC, which occurs crash or malfunction of crane works.

EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS (기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향)

  • Ko, S.H.;Kim, J.K.;Han, S.H.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

3D Reconstruction of a Single Clothing Image and Its Application to Image-based Virtual Try-On (의상 이미지의 3차원 의상 복원 방법과 가상착용 응용)

  • Ahn, Heejune;Minar, Matiur Rahman
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.1-11
    • /
    • 2020
  • Image-based virtual try-on (VTON) is becoming popular for online apparel shopping, mainly because of not requiring 3D information for try-on clothes and target humans. However, existing 2D algorithms, even when utilizing advanced non-rigid deformation algorithms, cannot handle large spatial transformations for complex target human poses. In this study, we propose a 3D clothing reconstruction method using a 3D human body model. The resulting 3D models of try-on clothes can be more easily deformed when applied to rest posed standard human models. Then, the poses and shapes of 3D clothing models can be transferred to the target human models estimated from 2D images. Finally, the deformed clothing models can be rendered and blended with target human representations. Experimental results with the VITON dataset used in the previous works show that the shapes of reconstructed clothing are significantly more natural, compared to the 2D image-based deformation results when human poses and shapes are estimated accurately.

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

A Study on the Vibration Reduction of an Automobile Fuel Pump (자동차용 연료펌프의 진동 저감에 대한 연구)

  • Kim, Byeong Jin;Won, Hong In;Lee, Seong Won;Park, Sang Jun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.520-526
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analyze the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. The stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Vertical coherence functions of wind forces and influences on wind-induced responses of a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.;Ding, Q.S.
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.119-158
    • /
    • 2015
  • The characteristics of the coherence functions of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on the Shanghai World Trade Centre - a 492 m super-tall building with section varying along height are studied via a synchronous multi-pressure measurement of the rigid model in wind tunnel simulating of the turbulent, and the corresponding mathematical expressions are proposed there from. The investigations show that the mathematical expressions of coherence functions in across-wind and torsional-wind directions can be constructed by superimposition of a modified exponential decay function and a peak function caused by turbulent flow and vortex shedding respectively, while that in along-wind direction need only be constructed by the former, similar to that of wind speed. Moreover, an inductive analysis method is proposed to summarize the fitted parameters of the wind force coherence functions of every two measurement levels of altitudes. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well. Later, the influences of coherence functions on wind-induced dynamic responses are analyzed in detail based on the proposed mathematical expressions and the frequency-domain method of random vibration theory.