• 제목/요약/키워드: Multi-body dynamic analysis

검색결과 263건 처리시간 0.032초

ADAMS를 이용한 로봇시스템의 동적 해석 및 제어 (Dynamic Analysis and Control of Robot System Using ADAMS)

  • 정운지;송태진;정동원;박덕제;윤영민;김기현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.418-421
    • /
    • 2004
  • This research is that analysis multi-body system that have flexibility. We composed system consisted of crane, part of traveling and robot. And we analyzed the aspect of vibration when this system runs using ADAMS. Through this research we can analyze vibration and displacement of end-effect part of the large size robot. And this research can became reference that is going to analyze resemblant dynamic system.

  • PDF

3축 이송용 로봇의 동적 해석 (Dynamic Analysis of a Three-Axis Mechanism for Transfer Robots)

  • 이석영
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.128-134
    • /
    • 2015
  • 본 연구는 연성체와 강체로 구성된 다물체 시스템을 분석한 것이다. 이송용 로봇은 주로 빠른 속도와 넓은 범위의 이동거리의 장점으로 무거운 부품으로 구성된 자동화산업에 사용된다. 주로 3축으로 구성되어 사용되는 이송용 로봇은 커다란 부하를 담당하기 위해 최근에 강도와 강성을 고려하여 개발되어진다. 따라서, 이러한 목적으로 과도모드가 적용된 동적해석을 수행하여 어느 시간과 위치에서 항복되는지 찾기 위해 수행되었다. 이러한 연구의 결과로 로봇의 응력과 변형량을 분석할 수 있었다.

유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화 (Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA))

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

초고속 유연회전체의 위상조절법을 이용한 능동진동제어 시뮬레이션 (Simulation of active vibration control using phase adjusting method with high speed flexible rotor system)

  • 나재봉;김성원;이원창;김재실
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2006
  • This study proposes a new simulation method of high speed rotor system with the dynamic model using multi body dynamic analysis tool and with a new phase modulating technique as a system control algorithm. A dynamic model of high speed rotor system was built by, ADAMS, commercial multi body dynamic program. The phase modulating technique is a new control algorithm for a rotor system. This algorithm can control system using an adaptive proportional gain and an adaptive phase which are obtained from periodical input signal. To make control system, a ADAMS model and component parameters and phase controller was composed by Matlab Simulink And simulate it.

  • PDF

유연보 모델에 의한 자기부상열차/궤도 동적 상호작용 시뮬레이션 (Simulation of the Dynamic Interaction Between Maglev and Guideway using a Flexible Beam Model)

  • 한형석;이종민;김동성;김봉섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.357-362
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis .of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study proposes a dynamic interaction simulation technique using a flexible beam model based on multi-body dynamics. The vehicle and the elevated guideway are represented as a multi-body dynamics model and a two-dimensional flexible beam, respectively. The proposed model was applied to an urban transit Maglev vehicle, UTM01, which is undergoing test drive. As a result of the proposed method, we concluded that it is possible to analyze the dynamic interaction between the Maglev vehicle and the guideway.

  • PDF

CFEM을 이용한 구속조건이 있는 다물체 운동해석 프로그램 개발 (Development of Multi-body Dynamics Analysis Program with Constraints using CFEM)

  • 박선호;이승수
    • 한국항공우주학회지
    • /
    • 제40권2호
    • /
    • pp.101-107
    • /
    • 2012
  • 본 연구에서는 CFEM을 이용하여 구속조건이 있는 다물체의 운동방정식해석 프로그램을 개발하였다. 다양한 구속조건을 다루기 위하여 7개의 구속모델이 적용되었다. 구속조건으로 보안된 운동방정식은 높은 정확도를 위해 4차의 Runge-Kutta 방법을 사용하여 해석하였다. 다양한 구속조건이 있는 문제에 대하여 개발된 프로그램을 적용하고, 발표된 결과와 비교함으로써 개발 프로그램을 검증하였다.

차체의 유연성을 고려한 차량 승차감 해석 (Analysis of Ride Comfort for an Automobile with flexible Vehicle Body)

  • 김정훈;최광성;박성용;이장무;강상욱;강주석
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구 (Multibody Dynamic Simulation and Running Characteristics of DMT Freight)

  • 이승일;엄범규;이희성
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2009
  • Through the multibody dynamic simulation, the analysis model of the modalohr freight car of the DMT freight car was developed. By using the developed analysis model, the running dynamic characteristics was inquired through the dynamic analysis about the modalohr freight car. As the running speed and the primary suspension were increased, the lateral and vertical vibration accelerations of the car-body and the bogie were also increased. In case of the lateral vibration acceleration of the car-body, however, review should be considered since it can be influenced by the nonlinear characteristic of the primary suspension. The lateral and vertical vibration of the car-body were generated at the frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$. And the lateral and vertical vibration of the bogie were generated at the frequency of $25{\sim}35\;Hz$ at the low speed section, $40{\sim}50\;Hz$ at the high speed section.

비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석 (Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory)

  • 박찬경;김석원;김회선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF